// !!!!!!!!!! EXPERIMENTAL TEST VERSION - USE WITH CAUTION - DO NOT RELEASE PUBLIC FIRMWARE !!!!!!!!!! // ------------------------------------------------------------- // PPM ENCODER V2.3.11 // ------------------------------------------------------------- // Improved servo to ppm for ArduPilot MEGA v1.x (ATmega328p), // PhoneDrone and APM2 (ATmega32u2) // By: John Arne Birkeland - 2012 // APM v1.x adaptation and "difficult" receiver testing by Olivier ADLER // ------------------------------------------------------------- // Changelog: // 01-08-2011 // V2.2.3 - Changed back to BLOCKING interrupts. // Assembly PPM compare interrupt can be switch back to non-blocking, but not recommended. // V2.2.3 - Implemented 0.5us cut filter to remove servo input capture jitter. // 04-08-2011 // V2.2.4 - Implemented PPM passtrough funtion. // Shorting channel 2&3 enabled ppm passtrough on channel 1. // 04-08-2011 // V2.2.5 - Implemented simple average filter to smooth servo input capture jitter. // Takes fewer clocks to execute and has better performance then cut filter. // 05-08-2011 // V2.2.51 - Minor bug fixes. // 06-08-2011 // V2.2.6 - PPM passtrough failsafe implemented. // The PPM generator will be activated and output failsafe values while ppm passtrough signal is missing. // 01-09-2011 // V2.2.61 - Temporary MUX pin always high patch for APM beta board // 22-09-2011 // V2.2.62 - ATmegaXXU2 USB connection status pin (PC2) for APM UART MUX selection (removed temporary high patch) // - Removed assembly optimized PPM generator (not usable for production release) // 23-09-2011 // V2.2.63 - Average filter disabled // 24-09-2011 // V2.2.64 - Added distincts Power on / Failsafe PPM values // - Changed CH5 (mode selection) PPM Power on and Failsafe values to 1555 (Flight mode 4) // - Added brownout detection : Failsafe values are copied after a brownout reset instead of power on values // 25-09-2011 // V2.2.65 - Implemented PPM output delay until input signal is detected (PWM and PPM pass-trough mode) // - Changed brownout detection and FailSafe handling to work with XXU2 chips // - Minor variable and define naming changes to enhance readability // 15-03-2012 // V2.2.66 - Added APM2 (ATmega32U2) support for using TX and RX status leds to indicate PWM and PPM traffic // - : = no pwm input detected, = speed of toggle indicate how many channel are active, = input lost (failsafe) // - : = ppm output not started, = normal PWM->PPM output or PPM passtrough failsafe, = PPM passtrough // 03-06-2012 // V2.2.67 - Implemented detection and failsafe (throttle = 900us) for missing throttle signal. // 04-06-2012 // V2.2.68 - Fixed possible logic flaw in throttle failsafe reset if _JITTER_FILTER_ is enabled // 02-11-2012 // V2.2.69 - Added PPM output positive polarity - mainly for standalone PPM encoder board use // 03-11-2012 // V2.3.0 - Implemented single channel fail-safe detection for all inputs // 16-11-2012 // V2.3.1 - Improved watchdog timer reset, so that only valid input signals will prevent the watchdog timer from triggering // 22-11-2012 // V2.3.11 - Very experimental test forcing throttle fail-safe (RTL) on single channel loss. !DO NOT RELEASE TO PUBLIC! // - Test for active input channels during init // ------------------------------------------------------------- #ifndef _PPM_ENCODER_H_ #define _PPM_ENCODER_H_ #include // ------------------------------------------------------------- #include #include #include // ------------------------------------------------------------- // SERVO INPUT FILTERS // ------------------------------------------------------------- // Using both filters is not recommended and may reduce servo input resolution // #define _AVERAGE_FILTER_ // Average filter to smooth servo input capture jitter // #define _JITTER_FILTER_ // Cut filter to remove 0,5us servo input capture jitter // ------------------------------------------------------------- #ifndef F_CPU #define F_CPU 16000000UL #endif #ifndef true #define true 1 #endif #ifndef false #define false 0 #endif #ifndef bool #define bool _Bool #endif // Version stamp for firmware hex file ( decode hex file using and look for "ArduPPM" string ) const char ver[15] = "ArduPPMv2.3.11"; // ------------------------------------------------------------- // INPUT MODE // ------------------------------------------------------------- #define JUMPER_SELECT_MODE 0 // Default - PPM passtrough mode selected if channel 2&3 shorted. Normal servo input (pwm) if not shorted. #define SERVO_PWM_MODE 1 // Normal 8 channel servo (pwm) input #define PPM_PASSTROUGH_MODE 2 // PPM signal passtrough on channel 1 #define JETI_MODE 3 // Reserved #define SPEKTRUM_MODE 4 // Reserved for Spektrum satelitte on channel 1 // Servo input mode (jumper (default), pwm, ppm, jeti or spektrum) volatile uint8_t servo_input_mode = JUMPER_SELECT_MODE; // ------------------------------------------------------------- // Number of Timer1 ticks in one microsecond #define ONE_US F_CPU / 8 / 1000 / 1000 // 400us PPM pre pulse #define PPM_PRE_PULSE ONE_US * 400 // ------------------------------------------------------------- // SERVO LIMIT VALUES // ------------------------------------------------------------- // Servo minimum position #define PPM_SERVO_MIN ONE_US * 900 - PPM_PRE_PULSE // Servo center position #define PPM_SERVO_CENTER ONE_US * 1500 - PPM_PRE_PULSE // Servo maximum position #define PPM_SERVO_MAX ONE_US * 2100 - PPM_PRE_PULSE // Throttle default at power on #define PPM_THROTTLE_DEFAULT ONE_US * 1100 - PPM_PRE_PULSE // Throttle during failsafe #define PPM_THROTTLE_FAILSAFE ONE_US * 900 - PPM_PRE_PULSE // CH5 power on values (mode selection channel) #define PPM_CH5_MODE_4 ONE_US * 1555 - PPM_PRE_PULSE // ------------------------------------------------------------- // PPM OUTPUT SETTINGS // ------------------------------------------------------------- // #define _POSITIVE_PPM_FRAME_ // Switch to positive pulse PPM // (the actual timing is encoded in the length of the low between two pulses) // Number of servo input channels #define SERVO_CHANNELS 8 // PPM period 18.5ms - 26.5ms (54hz - 37Hz) #define PPM_PERIOD ONE_US * ( 22500 - ( 8 * 1500 ) ) // Size of ppm[..] data array ( servo channels * 2 + 2) #define PPM_ARRAY_MAX 18 // ------------------------------------------------------------- // SERVO FAILSAFE VALUES // ------------------------------------------------------------- const uint16_t failsafe_ppm[ PPM_ARRAY_MAX ] = { PPM_PRE_PULSE, PPM_SERVO_CENTER, // Channel 1 PPM_PRE_PULSE, PPM_SERVO_CENTER, // Channel 2 PPM_PRE_PULSE, PPM_THROTTLE_FAILSAFE, // Channel 3 (throttle) PPM_PRE_PULSE, PPM_SERVO_CENTER, // Channel 4 PPM_PRE_PULSE, PPM_CH5_MODE_4, // Channel 5 PPM_PRE_PULSE, PPM_SERVO_CENTER, // Channel 6 PPM_PRE_PULSE, PPM_SERVO_CENTER, // Channel 7 PPM_PRE_PULSE, PPM_SERVO_CENTER, // Channel 8 PPM_PRE_PULSE, PPM_PERIOD }; // ------------------------------------------------------------- // Data array for storing ppm (8 channels) pulse widths. // ------------------------------------------------------------- volatile uint16_t ppm[ PPM_ARRAY_MAX ] = { PPM_PRE_PULSE, PPM_SERVO_CENTER, // Channel 1 PPM_PRE_PULSE, PPM_SERVO_CENTER, // Channel 2 PPM_PRE_PULSE, PPM_THROTTLE_DEFAULT, // Channel 3 (throttle) PPM_PRE_PULSE, PPM_SERVO_CENTER, // Channel 4 PPM_PRE_PULSE, PPM_CH5_MODE_4, // Channel 5 PPM_PRE_PULSE, PPM_SERVO_CENTER, // Channel 6 PPM_PRE_PULSE, PPM_SERVO_CENTER, // Channel 7 PPM_PRE_PULSE, PPM_SERVO_CENTER, // Channel 8 PPM_PRE_PULSE, PPM_PERIOD }; // ------------------------------------------------------------- // Data arraw for storing ppm timeout (missing channel detection) // ------------------------------------------------------------- #define PPM_TIMEOUT_VALUE 40 // ~1sec before triggering missing channel detection volatile uint8_t ppm_timeout[ PPM_ARRAY_MAX ]; // Servo input channel connected flag volatile bool servo_input_connected[ PPM_ARRAY_MAX ]; // AVR parameters for PhoneDrone and APM2 boards using ATmega32u2 #if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__) #define SERVO_DDR DDRB #define SERVO_PORT PORTB #define SERVO_INPUT PINB #define SERVO_INT_VECTOR PCINT0_vect #define SERVO_INT_MASK PCMSK0 #define SERVO_INT_CLEAR_FLAG PCIF0 #define SERVO_INT_ENABLE PCIE0 #define SERVO_TIMER_CNT TCNT1 #define PPM_DDR DDRC #define PPM_PORT PORTC #define PPM_OUTPUT_PIN PC6 #define PPM_INT_VECTOR TIMER1_COMPA_vect #define PPM_COMPARE OCR1A #define PPM_COMPARE_FLAG COM1A0 #define PPM_COMPARE_ENABLE OCIE1A #define PPM_COMPARE_FORCE_MATCH FOC1A #define USB_DDR DDRC #define USB_PORT PORTC #define USB_PIN PC2 // true if we have received a USB device connect event static bool usb_connected; // USB connected event void EVENT_USB_Device_Connect(void) { // Toggle USB pin high if USB is connected USB_PORT |= (1 << USB_PIN); usb_connected = true; // this unsets the pin connected to PA1 on the 2560 // when the bit is clear, USB is connected PORTD &= ~1; } // USB disconnect event void EVENT_USB_Device_Disconnect(void) { // toggle USB pin low if USB is disconnected USB_PORT &= ~(1 << USB_PIN); usb_connected = false; // this sets the pin connected to PA1 on the 2560 // when the bit is clear, USB is connected PORTD |= 1; } // AVR parameters for ArduPilot MEGA v1.4 PPM Encoder (ATmega328P) #elif defined (__AVR_ATmega328P__) || defined (__AVR_ATmega328__) #define SERVO_DDR DDRD #define SERVO_PORT PORTD #define SERVO_INPUT PIND #define SERVO_INT_VECTOR PCINT2_vect #define SERVO_INT_MASK PCMSK2 #define SERVO_INT_CLEAR_FLAG PCIF2 #define SERVO_INT_ENABLE PCIE2 #define SERVO_TIMER_CNT TCNT1 #define PPM_DDR DDRB #define PPM_PORT PORTB #define PPM_OUTPUT_PIN PB2 #define PPM_INT_VECTOR TIMER1_COMPB_vect #define PPM_COMPARE OCR1B #define PPM_COMPARE_FLAG COM1B0 #define PPM_COMPARE_ENABLE OCIE1B #define PPM_COMPARE_FORCE_MATCH FOC1B #else #error NO SUPPORTED DEVICE FOUND! (ATmega16u2 / ATmega32u2 / ATmega328p) #endif // Used to force throttle fail-safe mode (RTL) volatile bool throttle_failsafe_force = false; // Used to indicate invalid SERVO input signals volatile uint8_t servo_input_errors = 0; // Used to indicate missing SERVO input signals volatile bool servo_input_missing = true; // Used to indicate if PPM generator is active volatile bool ppm_generator_active = false; // Used to indicate a brownout restart volatile bool brownout_reset = false; // ------------------------------------------------------------------------------ // PPM GENERATOR START - TOGGLE ON COMPARE INTERRUPT ENABLE // ------------------------------------------------------------------------------ void ppm_start( void ) { // Prevent reenabling an already active PPM generator if( ppm_generator_active ) return; // Store interrupt status and register flags uint8_t SREG_tmp = SREG; // Stop interrupts cli(); // Make sure initial output state is low PPM_PORT &= ~(1 << PPM_OUTPUT_PIN); // Wait for output pin to settle //_delay_us( 1 ); // Set initial compare toggle to maximum (32ms) to give other parts of the system time to start SERVO_TIMER_CNT = 0; PPM_COMPARE = 0xFFFF; // Set toggle on compare output TCCR1A = (1 << PPM_COMPARE_FLAG); // Set TIMER1 8x prescaler TCCR1B = ( 1 << CS11 ); #if defined (_POSITIVE_PPM_FRAME_) // Force output compare to reverse polarity TCCR1C |= (1 << PPM_COMPARE_FORCE_MATCH); #endif // Enable output compare interrupt TIMSK1 |= (1 << PPM_COMPARE_ENABLE); // Indicate that PPM generator is active ppm_generator_active = true; // Restore interrupt status and register flags SREG = SREG_tmp; #if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__) // Turn on TX led if PPM generator is active PORTD &= ~( 1<< PD5 ); #endif } // ------------------------------------------------------------------------------ // PPM GENERATOR STOP - TOGGLE ON COMPARE INTERRUPT DISABLE // ------------------------------------------------------------------------------ void ppm_stop( void ) { // Store interrupt status and register flags uint8_t SREG_tmp = SREG; // Stop interrupts cli(); // Disable output compare interrupt TIMSK1 &= ~(1 << PPM_COMPARE_ENABLE); // Reset TIMER1 registers TCCR1A = 0; TCCR1B = 0; // Indicate that PPM generator is not active ppm_generator_active = false; // Restore interrupt status and register flags SREG = SREG_tmp; #if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__) // Turn off TX led if PPM generator is off PORTD |= ( 1<< PD5 ); #endif } // ------------------------------------------------------------------------------ // Watchdog Interrupt (interrupt only mode, no reset) // ------------------------------------------------------------------------------ ISR( WDT_vect ) // If watchdog is triggered then enable missing signal flag and copy power on or failsafe positions { // Use failsafe values if PPM generator is active or if chip has been reset from a brown-out if ( ppm_generator_active || brownout_reset ) { // Copy failsafe values to ppm[..] for ( uint8_t i = 0; i < PPM_ARRAY_MAX; i++ ) { ppm[ i ] = failsafe_ppm[ i ]; } } // If we are in PPM passtrough mode and a input signal has been detected, or if chip has been reset from a brown_out then start the PPM generator. if( ( servo_input_mode == PPM_PASSTROUGH_MODE && servo_input_missing == false ) || brownout_reset ) { // Start PPM generator ppm_start(); brownout_reset = false; } // Set missing receiver signal flag servo_input_missing = true; // Reset servo input error flag servo_input_errors = 0; #if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__) // Turn on RX led if failsafe has triggered after ppm generator i active if( ppm_generator_active ) PORTD &= ~( 1<< PD4 ); #endif } // ------------------------------------------------------------------------------ // ------------------------------------------------------------------------------ // SERVO/PPM INPUT - PIN CHANGE INTERRUPT // ------------------------------------------------------------------------------ ISR( SERVO_INT_VECTOR ) { // Servo pulse start timing //static uint16_t servo_start[ SERVO_CHANNELS ] = { 0, 0, 0, 0, 0, 0, 0, 0 }; static uint16_t servo_start[ PPM_ARRAY_MAX ] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // We sacrefice some memory but save instructions by working with ppm index count (18) instead of input channel count (8) #if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__) // Toggle LED delay static uint8_t led_delay = 0; #endif // Servo input pin storage static uint8_t servo_pins_old = 0; // Used to store current servo input pins uint8_t servo_pins; // Read current servo pulse change time uint16_t servo_time = SERVO_TIMER_CNT; // ------------------------------------------------------------------------------ // PPM passtrough mode ( signal passtrough from channel 1 to ppm output pin) // ------------------------------------------------------------------------------ if( servo_input_mode == PPM_PASSTROUGH_MODE ) { // Has watchdog timer failsafe started PPM generator? If so we need to stop it. if( ppm_generator_active ) { // Stop PPM generator ppm_stop(); } // PPM (channel 1) input pin is high if( SERVO_INPUT & 1 ) { // Set PPM output pin high PPM_PORT |= (1 << PPM_OUTPUT_PIN); } // PPM (channel 1) input pin is low else { // Set PPM output pin low PPM_PORT &= ~(1 << PPM_OUTPUT_PIN); } // Reset Watchdog Timer wdt_reset(); // Set servo input missing flag false to indicate that we have received servo input signals servo_input_missing = false; #if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__) // Toggle TX LED at PPM passtrough if( ++led_delay > 128 ) // Toggle every 128th pulse { // Toggle TX led PIND |= ( 1<< PD5 ); led_delay = 0; } #endif // Leave interrupt return; } // ------------------------------------------------------------------------------ // SERVO PWM MODE // ------------------------------------------------------------------------------ uint8_t servo_change; uint8_t servo_pin ; //uint8_t servo_channel ; uint8_t ppm_channel; CHECK_PINS_START: // Start of servo input check // Store current servo input pins servo_pins = SERVO_INPUT; // Calculate servo input pin change mask servo_change = servo_pins ^ servo_pins_old; // Set initial servo pin, channel and ppm[..] index servo_pin = 1; //servo_channel = 0; ppm_channel = 1; CHECK_PINS_LOOP: // Input servo pin check loop // Check for pin change on current servo channel if( servo_change & servo_pin ) { // High (raising edge) if( servo_pins & servo_pin ) { //servo_start[ servo_channel ] = servo_time; servo_start[ ppm_channel ] = servo_time; } else { // Get servo pulse width //uint16_t servo_width = servo_time - servo_start[ servo_channel ] - PPM_PRE_PULSE; uint16_t servo_width = servo_time - servo_start[ ppm_channel ] - PPM_PRE_PULSE; // Check that servo pulse signal is valid before sending to ppm encoder if( servo_width > PPM_SERVO_MAX ) goto CHECK_PINS_ERROR; if( servo_width < PPM_SERVO_MIN ) goto CHECK_PINS_ERROR; // Reset Watchdog Timer wdt_reset(); // Channel has received a valid signal, so it must be connected // servo_input_connected [ ppm_channel ] = true; // Removed - Check performed during init // Check for forced throttle fail-safe if( throttle_failsafe_force && ppm_channel == 5 ) { // Force throttle fail-safe ppm_timeout[ ppm_channel ] = 255; } else { //Reset ppm single channel fail-safe timeout ppm_timeout[ ppm_channel ] = 0; } #ifdef _AVERAGE_FILTER_ // Average filter to smooth input jitter servo_width += ppm[ ppm_channel ]; servo_width >>= 1; #endif #ifdef _JITTER_FILTER_ // 0.5us cut filter to remove input jitter int16_t ppm_tmp = ppm[ ppm_channel ] - servo_width; if( ppm_tmp == 1 ) goto CHECK_PINS_NEXT; if( ppm_tmp == -1 ) goto CHECK_PINS_NEXT; #endif // Update ppm[..] ppm[ ppm_channel ] = servo_width; } } CHECK_PINS_NEXT: // Select next servo pin servo_pin <<= 1; // Select next servo channel //servo_channel++; // Select next ppm[..] index ppm_channel += 2; // Check channel and process if needed //if( servo_channel < SERVO_CHANNELS ) goto CHECK_PINS_LOOP; if( servo_pin ) goto CHECK_PINS_LOOP; // Bit shifts to zero when all pins have been checked goto CHECK_PINS_DONE; CHECK_PINS_ERROR: // Used to indicate invalid servo input signals servo_input_errors++; #if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__) // Delay LED toggle led_delay = 0; #endif goto CHECK_PINS_NEXT; // All servo input pins has now been processed CHECK_PINS_DONE: // Set servo input missing flag false to indicate that we have received servo input signals servo_input_missing = false; // Store current servo input pins for next check servo_pins_old = servo_pins; // Start PPM generator if not already running if( ppm_generator_active == false ) ppm_start(); #if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__) // Toggle RX LED when finished receiving servo pulses if( ++led_delay > 64 ) // Toggle led every 64th time { PIND |= ( 1<< PD4 ); led_delay = 0; } #endif //Has servo input changed while processing pins, if so we need to re-check pins if( servo_pins != SERVO_INPUT ) goto CHECK_PINS_START; // Clear interrupt event from already processed pin changes PCIFR |= (1 << SERVO_INT_CLEAR_FLAG); } // ------------------------------------------------------------------------------ // ------------------------------------------------------------------------------ // PPM OUTPUT - TIMER1 COMPARE INTERRUPT // ------------------------------------------------------------------------------ ISR( PPM_INT_VECTOR ) { // Current active ppm channel static uint8_t ppm_channel = PPM_ARRAY_MAX - 1; // Update timing for next compare toggle with either current ppm input value, or fail-safe value if there is a channel timeout. if( ppm_timeout[ ppm_channel ] > PPM_TIMEOUT_VALUE ) { // Use ppm fail-safe value PPM_COMPARE += failsafe_ppm[ ppm_channel ]; // Did we lose an active servo input channel? If so force throttle fail-safe (RTL) if( servo_input_connected[ ppm_channel ] ) { throttle_failsafe_force = true; } } else { // Use latest ppm input value PPM_COMPARE += ppm[ ppm_channel ]; // Increment channel timeout (reset to zero in input interrupt each time a valid signal is detected) ppm_timeout[ ppm_channel ] ++; } // Select the next ppm channel if( ++ppm_channel >= PPM_ARRAY_MAX ) { ppm_channel = 0; #if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__) // Blink TX LED when PPM generator has finished a pulse train PIND |= ( 1<< PD5 ); #endif } } // ------------------------------------------------------------------------------ // ------------------------------------------------------------------------------ // PPM READ - INTERRUPT SAFE PPM SERVO CHANNEL READ // ------------------------------------------------------------------------------ uint16_t ppm_read_channel( uint8_t channel ) { // Limit channel to valid value uint8_t _channel = channel; if( _channel == 0 ) _channel = 1; if( _channel > SERVO_CHANNELS ) _channel = SERVO_CHANNELS; // Calculate ppm[..] position uint8_t ppm_index = ( _channel << 1 ) + 1; // Read ppm[..] in a non blocking interrupt safe manner uint16_t ppm_tmp = ppm[ ppm_index ]; while( ppm_tmp != ppm[ ppm_index ] ) ppm_tmp = ppm[ ppm_index ]; // Return as normal servo value return ppm_tmp + PPM_PRE_PULSE; } // ------------------------------------------------------------------------------ // ------------------------------------------------------------------------------ // PPM ENCODER INIT // ------------------------------------------------------------------------------ void ppm_encoder_init( void ) { // ATmegaXXU2 only init code // ------------------------------------------------------------------------------ #if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__) // ------------------------------------------------------------------------------ // Reset Source checkings // ------------------------------------------------------------------------------ if (MCUSR & 1) // Power-on Reset { MCUSR=0; // Clear MCU Status register // custom code here } else if (MCUSR & 2) // External Reset { MCUSR=0; // Clear MCU Status register // custom code here } else if (MCUSR & 4) // Brown-Out Reset { MCUSR=0; // Clear MCU Status register brownout_reset=true; } else // Watchdog Reset { MCUSR=0; // Clear MCU Status register // custom code here } // APM USB connection status UART MUX selector pin // ------------------------------------------------------------------------------ USB_DDR |= (1 << USB_PIN); // Set USB pin to output #endif // USE JUMPER TO CHECK FOR PWM OR PPM PASSTROUGH MODE (channel 2&3 shorted) // ------------------------------------------------------------------------------ if( servo_input_mode == JUMPER_SELECT_MODE ) { // channel 3 status counter uint8_t channel3_status = 0; // Set channel 3 to input SERVO_DDR &= ~(1 << 2); // Enable channel 3 pullup SERVO_PORT |= (1 << 2); // Set channel 2 to output SERVO_DDR |= (1 << 1); // Set channel 2 output low SERVO_PORT &= ~(1 << 1); _delay_us (10); // Increment channel3_status if channel 3 is set low by channel 2 if( ( SERVO_INPUT & (1 << 2) ) == 0 ) channel3_status++; // Set channel 2 output high SERVO_PORT |= (1 << 1); _delay_us (10); // Increment channel3_status if channel 3 is set high by channel 2 if( ( SERVO_INPUT & (1 << 2) ) != 0 ) channel3_status++; // Set channel 2 output low SERVO_PORT &= ~(1 << 1); _delay_us (10); // Increment channel3_status if channel 3 is set low by channel 2 if( ( SERVO_INPUT & (1 << 2) ) == 0 ) channel3_status++; // Set servo input mode based on channel3_status if( channel3_status == 3 ) servo_input_mode = PPM_PASSTROUGH_MODE; else servo_input_mode = SERVO_PWM_MODE; } // SERVO/PPM INPUT PINS // ------------------------------------------------------------------------------ // Set all servo input pins to inputs SERVO_DDR = 0; // Activate pullups on all input pins SERVO_PORT |= 0xFF; #if defined (__AVR_ATmega16U2__) || defined (__AVR_ATmega32U2__) // on 32U2 set PD0 to be an output, and clear the bit. This tells // the 2560 that USB is connected. The USB connection event fires // later to set the right value DDRD |= 1; if (usb_connected) { PORTD &= ~1; } else { PORTD |= 1; } #endif // PPM PASS-THROUGH MODE if( servo_input_mode == PPM_PASSTROUGH_MODE ) { // Set servo input interrupt pin mask to servo input channel 1 SERVO_INT_MASK = 0x01; } // SERVO PWM INPUT MODE // ------------------------------------------------------------------------------ if( servo_input_mode == SERVO_PWM_MODE ) { // CHECK FOR ACTIVE INPUT CHANNELS // ------------------------------------------------------------------------------ // This will poll the input pins looking for pin level changes, and mark the inputs with active signal connections uint16_t input_channel_count[ SERVO_CHANNELS ]; uint8_t input_current; // Input pin level mask uint8_t input_previous; // Input pin level mask uint8_t input_int_mask; // Active input pin interupt mask INPUT_ACTIVE_CHANNEL_CHECK: // ~100khz timed polling of input pins for ~0.5sec duration (1us = 16 clocks) for( uint16_t t = 0; t < 50000; t++ ) // 10us * 1000ms * 0.5sec = 50000 delayed loops at 10us { // Get current input pin levels input_current = SERVO_INPUT; // Check input pins against previous levels uint8_t input_change = input_current ^ input_previous; // Do we need to check for changes? if( input_change ) { // Check for change on all input pins uint8_t input_pin = 1; uint8_t input_channel = 0; do { // Check for change on current input pin if( input_change & input_pin ) { // Pin has changed, count it input_channel_count[ input_channel ]++; } // Select next pin input_pin <<= 1; // Select next channel input_channel++; } while ( input_channel < SERVO_CHANNELS ); // Store checked input pin levels input_previous = input_current; } // Delay the next input level check _delay_us( 10 ); } // Check input_channel_count[..] to see if channels are active. for( uint8_t input_channel = 0; input_channel < SERVO_CHANNELS; input_channel++ ) { // Is current channel active? if( input_channel_count[ input_channel ] > 20 ) // 0.5sec * 40hz * 2 = 40 pulse edges - 50% margin = 20 level changes { // Set active channel in servo_input_connected[..] servo_input_connected[ (input_channel << 1) + 1 ] = true; // Set interupt pin mask for active channel input_int_mask |= 1 << input_channel; } } // if no active input channels are found, then re-check until found (might be caused by delayed receiver startup) // Do not perform re-check if there was a brown-out reset if( input_int_mask > 0 && !brownout_reset ) { // Re-check active input channels goto INPUT_ACTIVE_CHANNEL_CHECK; } // Set servo input interrupt pin mask // Set to all input channel for safety in case of brown-out reset if( brownout_reset) { // Interrupt on all input pins SERVO_INT_MASK = 0xFF; } else { // Interrupt only on active input pins SERVO_INT_MASK = input_int_mask; } } // Enable servo input interrupt PCICR |= (1 << SERVO_INT_ENABLE); // PPM OUTPUT // ------------------------------------------------------------------------------ // PPM generator (PWM output timer/counter) is started either by pin change interrupt or by watchdog interrupt // Set PPM pin to output PPM_DDR |= (1 << PPM_OUTPUT_PIN); // ------------------------------------------------------------------------------ // Enable watchdog interrupt mode // ------------------------------------------------------------------------------ // Disable watchdog wdt_disable(); // Reset watchdog timer wdt_reset(); // Start timed watchdog setup sequence WDTCSR |= (1<