// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- //Function that will read the radio data, limit servos and trigger a failsafe // ---------------------------------------------------------------------------- static byte failsafeCounter = 0; // we wait a second to take over the throttle and send the plane circling static void init_rc_in() { // set rc reversing update_servo_switches(); // set rc channel ranges g.channel_roll.set_angle(SERVO_MAX); g.channel_pitch.set_angle(SERVO_MAX); g.channel_rudder.set_angle(SERVO_MAX); g.channel_throttle.set_range(0, 100); // set rc dead zones g.channel_roll.set_dead_zone(60); g.channel_pitch.set_dead_zone(60); g.channel_rudder.set_dead_zone(60); g.channel_throttle.set_dead_zone(6); //g.channel_roll.dead_zone = 60; //g.channel_pitch.dead_zone = 60; //g.channel_rudder.dead_zone = 60; //g.channel_throttle.dead_zone = 6; //set auxiliary ranges update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8); } static void init_rc_out() { APM_RC.Init( &isr_registry ); // APM Radio initialization APM_RC.enable_out(CH_1); APM_RC.enable_out(CH_2); APM_RC.enable_out(CH_3); APM_RC.enable_out(CH_4); APM_RC.enable_out(CH_5); APM_RC.enable_out(CH_6); APM_RC.enable_out(CH_7); APM_RC.enable_out(CH_8); #if HIL_MODE != HIL_MODE_ATTITUDE APM_RC.OutputCh(CH_1, g.channel_roll.radio_trim); // Initialization of servo outputs APM_RC.OutputCh(CH_2, g.channel_pitch.radio_trim); APM_RC.OutputCh(CH_3, g.channel_throttle.radio_min); APM_RC.OutputCh(CH_4, g.channel_rudder.radio_trim); APM_RC.OutputCh(CH_5, g.rc_5.radio_trim); APM_RC.OutputCh(CH_6, g.rc_6.radio_trim); APM_RC.OutputCh(CH_7, g.rc_7.radio_trim); APM_RC.OutputCh(CH_8, g.rc_8.radio_trim); #else APM_RC.OutputCh(CH_1, 1500); // Initialization of servo outputs APM_RC.OutputCh(CH_2, 1500); APM_RC.OutputCh(CH_3, 1000); APM_RC.OutputCh(CH_4, 1500); APM_RC.OutputCh(CH_5, 1500); APM_RC.OutputCh(CH_6, 1500); APM_RC.OutputCh(CH_7, 1500); APM_RC.OutputCh(CH_8, 2000); #endif } static void read_radio() { static uint16_t aileron1; static uint16_t aileron2; ch1_temp = APM_RC.InputCh(CH_ROLL); ch2_temp = APM_RC.InputCh(CH_PITCH); if(g.mix_mode == 0){ g.channel_roll.set_pwm(ch1_temp); g.channel_pitch.set_pwm(ch2_temp); }else{ g.channel_roll.set_pwm(BOOL_TO_SIGN(g.reverse_elevons) * (BOOL_TO_SIGN(g.reverse_ch2_elevon) * int(ch2_temp - elevon2_trim) - BOOL_TO_SIGN(g.reverse_ch1_elevon) * int(ch1_temp - elevon1_trim)) / 2 + 1500); g.channel_pitch.set_pwm((BOOL_TO_SIGN(g.reverse_ch2_elevon) * int(ch2_temp - elevon2_trim) + BOOL_TO_SIGN(g.reverse_ch1_elevon) * int(ch1_temp - elevon1_trim)) / 2 + 1500); } g.channel_throttle.set_pwm(APM_RC.InputCh(CH_3)); g.channel_rudder.set_pwm(APM_RC.InputCh(CH_4)); #if FLAPERON == ENABLED // JLN update for true flaperons if (control_mode == MANUAL) { g.rc_5.set_pwm(APM_RC.InputCh(CH_5)); g.rc_6.set_pwm(APM_RC.InputCh(CH_6)); } else { aileron1 = g.rc_5.radio_trim + (BOOL_TO_SIGN(-g.rc_5.get_reverse()) *g.channel_roll.angle_to_pwm()); aileron2 = g.rc_6.radio_trim + (BOOL_TO_SIGN(-g.rc_6.get_reverse()) *g.channel_roll.angle_to_pwm()); aileron1 = constrain(aileron1,(uint16_t)g.rc_5.radio_min,(uint16_t)g.rc_5.radio_max); aileron2 = constrain(aileron2,(uint16_t)g.rc_6.radio_min,(uint16_t)g.rc_6.radio_max); g.rc_5.set_pwm(aileron1); g.rc_6.set_pwm(aileron2); } #else g.rc_5.set_pwm(APM_RC.InputCh(CH_5)); g.rc_6.set_pwm(APM_RC.InputCh(CH_6)); #endif g.rc_7.set_pwm(APM_RC.InputCh(CH_7)); g.rc_8.set_pwm(APM_RC.InputCh(CH_8)); // TO DO - go through and patch throttle reverse for RC_Channel library compatibility #if THROTTLE_REVERSE == 1 g.channel_throttle.radio_in = g.channel_throttle.radio_max + g.channel_throttle.radio_min - g.channel_throttle.radio_in; #endif control_failsafe(g.channel_throttle.radio_in); g.channel_throttle.servo_out = g.channel_throttle.control_in; if (g.channel_throttle.servo_out > 50) { if(g.airspeed_enabled == true) { airspeed_nudge = (g.flybywire_airspeed_max * 100 - g.airspeed_cruise) * ((g.channel_throttle.norm_input()-0.5) / 0.5); airspeed_nudge = g.nudgeoffset + airspeed_nudge; } else { throttle_nudge = (g.throttle_max - g.throttle_cruise) * ((g.channel_throttle.norm_input()-0.5) / 0.5); } } else { airspeed_nudge = g.nudgeoffset; throttle_nudge = 0; } /* Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d \n"), g.rc_1.control_in, g.rc_2.control_in, g.rc_3.control_in, g.rc_4.control_in); */ } static void control_failsafe(uint16_t pwm) { if(g.throttle_fs_enabled == 0) return; // Check for failsafe condition based on loss of GCS control if (rc_override_active) { if(millis() - rc_override_fs_timer > FAILSAFE_SHORT_TIME) { ch3_failsafe = true; } else { ch3_failsafe = false; } //Check for failsafe and debounce funky reads } else if (g.throttle_fs_enabled) { if (pwm < (unsigned)g.throttle_fs_value){ // we detect a failsafe from radio // throttle has dropped below the mark failsafeCounter++; if (failsafeCounter == 9){ gcs_send_text_fmt(PSTR("MSG FS ON %u"), (unsigned)pwm); }else if(failsafeCounter == 10) { ch3_failsafe = true; }else if (failsafeCounter > 10){ failsafeCounter = 11; } }else if(failsafeCounter > 0){ // we are no longer in failsafe condition // but we need to recover quickly failsafeCounter--; if (failsafeCounter > 3){ failsafeCounter = 3; } if (failsafeCounter == 1){ gcs_send_text_fmt(PSTR("MSG FS OFF %u"), (unsigned)pwm); }else if(failsafeCounter == 0) { ch3_failsafe = false; }else if (failsafeCounter <0){ failsafeCounter = -1; } } } } static void trim_control_surfaces() { read_radio(); // Store control surface trim values // --------------------------------- if(g.mix_mode == 0){ if ((g.channel_roll.radio_in > 1400) && (g.channel_pitch.radio_trim > 1400)) { g.channel_roll.radio_trim = g.channel_roll.radio_max + g.channel_roll.radio_min - g.channel_roll.radio_in; g.channel_pitch.radio_trim = g.channel_pitch.radio_max + g.channel_pitch.radio_min - g.channel_pitch.radio_in; g.channel_rudder.radio_trim = g.channel_rudder.radio_max + g.channel_rudder.radio_min - g.channel_rudder.radio_in; G_RC_AUX(k_aileron)->radio_trim = g_rc_function[RC_Channel_aux::k_aileron]->radio_in; // Second aileron channel } else { g.channel_roll.radio_trim = 1500; // case of HIL test without receiver active g.channel_pitch.radio_trim = 1500; g.channel_rudder.radio_trim = 1500; g.channel_throttle.radio_trim = 1000; G_RC_AUX(k_aileron)->radio_trim = 1500; } }else{ elevon1_trim = ch1_temp; elevon2_trim = ch2_temp; //Recompute values here using new values for elevon1_trim and elevon2_trim //We cannot use radio_in[CH_ROLL] and radio_in[CH_PITCH] values from read_radio() because the elevon trim values have changed uint16_t center = 1500; g.channel_roll.radio_trim = center; g.channel_pitch.radio_trim = center; } // save to eeprom g.channel_roll.save_eeprom(); g.channel_pitch.save_eeprom(); //g.channel_throttle.save_eeprom(); g.channel_rudder.save_eeprom(); G_RC_AUX(k_aileron)->save_eeprom(); } static void trim_radio() { for (int y = 0; y < 30; y++) { read_radio(); } // Store the trim values // --------------------- if(g.mix_mode == 0){ if ((g.channel_roll.radio_in > 1400) && (g.channel_pitch.radio_trim > 1400)) { g.channel_roll.radio_trim = g.channel_roll.radio_in; g.channel_pitch.radio_trim = g.channel_pitch.radio_in; //g.channel_throttle.radio_trim = g.channel_throttle.radio_in; g.channel_rudder.radio_trim = g.channel_rudder.radio_in; G_RC_AUX(k_aileron)->radio_trim = g_rc_function[RC_Channel_aux::k_aileron]->radio_in; // Second aileron channel } else { g.channel_roll.radio_trim = 1500; // case of HIL test without receiver active g.channel_pitch.radio_trim = 1500; g.channel_rudder.radio_trim = 1500; g.channel_throttle.radio_trim = 1000; G_RC_AUX(k_aileron)->radio_trim = 1500; } } else { elevon1_trim = ch1_temp; elevon2_trim = ch2_temp; uint16_t center = 1500; g.channel_roll.radio_trim = center; g.channel_pitch.radio_trim = center; g.channel_rudder.radio_trim = g.channel_rudder.radio_in; } // save to eeprom g.channel_roll.save_eeprom(); g.channel_pitch.save_eeprom(); //g.channel_throttle.save_eeprom(); g.channel_rudder.save_eeprom(); G_RC_AUX(k_aileron)->save_eeprom(); }