// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* AP_MotorsMatrix.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
#include
#include "AP_MotorsMatrix.h"
extern const AP_HAL::HAL& hal;
// Init
void AP_MotorsMatrix::Init()
{
// setup the motors
setup_motors();
// enable fast channels or instant pwm
set_update_rate(_speed_hz);
}
// set update rate to motors - a value in hertz
void AP_MotorsMatrix::set_update_rate( uint16_t speed_hz )
{
uint8_t i;
// record requested speed
_speed_hz = speed_hz;
// check each enabled motor
uint32_t mask = 0;
for( i=0; icork();
for (i=0; ipush();
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsMatrix::get_motor_mask()
{
uint16_t mask = 0;
for (uint8_t i=0; i= _throttle_thrust_max) {
throttle_thrust = _throttle_thrust_max;
limit.throttle_upper = true;
}
throttle_thrust_rpy_mix = MAX(throttle_thrust, throttle_thrust*MAX(0.0f,1.0f-_throttle_rpy_mix)+throttle_thrust_hover*_throttle_rpy_mix);
// calculate throttle that gives most possible room for yaw which is the lower of:
// 1. 0.5f - (rpy_low+rpy_high)/2.0 - this would give the maximum possible margin above the highest motor and below the lowest
// 2. the higher of:
// a) the pilot's throttle input
// b) the point _throttle_rpy_mix between the pilot's input throttle and hover-throttle
// Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this.
// Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise.
// We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favor reducing throttle *because* it provides better yaw control)
// We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favor reducing throttle instead of better yaw control because the pilot has commanded it
// calculate amount of yaw we can fit into the throttle range
// this is always equal to or less than the requested yaw from the pilot or rate controller
throttle_thrust_best_rpy = MIN(0.5f, throttle_thrust_rpy_mix);
// calculate roll and pitch for each motor
// calculate the amount of yaw input that each motor can accept
for (i=0; i 0.0f) {
unused_range = fabsf((1.0 - (throttle_thrust_best_rpy + _thrust_rpyt_out[i]))/_yaw_factor[i]);
if (yaw_allowed > unused_range) {
yaw_allowed = unused_range;
}
} else {
unused_range = fabsf((throttle_thrust_best_rpy + _thrust_rpyt_out[i])/_yaw_factor[i]);
if (yaw_allowed > unused_range) {
yaw_allowed = unused_range;
}
}
}
}
}
// todo: make _yaw_headroom 0 to 1
yaw_allowed = MAX(yaw_allowed, (float)_yaw_headroom/1000.0f);
if (fabsf(yaw_thrust) > yaw_allowed) {
yaw_thrust = constrain_float(yaw_thrust, -yaw_allowed, yaw_allowed);
limit.yaw = true;
}
// add yaw to intermediate numbers for each motor
rpy_low = 0.0f;
rpy_high = 0.0f;
for (i=0; i rpy_high) {
rpy_high = _thrust_rpyt_out[i];
}
}
}
// check everything fits
throttle_thrust_best_rpy = MIN(0.5f - (rpy_low+rpy_high)/2.0, throttle_thrust_rpy_mix);
if (is_zero(rpy_low)){
rpy_scale = 1.0f;
} else {
rpy_scale = constrain_float(-throttle_thrust_best_rpy/rpy_low, 0.0f, 1.0f);
}
// calculate how close the motors can come to the desired throttle
thr_adj = throttle_thrust - throttle_thrust_best_rpy;
if (rpy_scale < 1.0f){
// Full range is being used by roll, pitch, and yaw.
limit.roll_pitch = true;
limit.yaw = true;
if (thr_adj > 0.0f) {
limit.throttle_upper = true;
}
thr_adj = 0.0f;
} else {
if (thr_adj < -(throttle_thrust_best_rpy+rpy_low)){
// Throttle can't be reduced to desired value
thr_adj = -(throttle_thrust_best_rpy+rpy_low);
} else if (thr_adj > 1.0f - (throttle_thrust_best_rpy+rpy_high)){
// Throttle can't be increased to desired value
thr_adj = 1.0f - (throttle_thrust_best_rpy+rpy_high);
limit.throttle_upper = true;
}
}
// add scaled roll, pitch, constrained yaw and throttle for each motor
for (i=0; icork();
for (uint8_t i=0; ipush();
}
// add_motor
void AP_MotorsMatrix::add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, uint8_t testing_order)
{
// ensure valid motor number is provided
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
// increment number of motors if this motor is being newly motor_enabled
if( !motor_enabled[motor_num] ) {
motor_enabled[motor_num] = true;
}
// set roll, pitch, thottle factors and opposite motor (for stability patch)
_roll_factor[motor_num] = roll_fac;
_pitch_factor[motor_num] = pitch_fac;
_yaw_factor[motor_num] = yaw_fac;
// set order that motor appears in test
_test_order[motor_num] = testing_order;
uint8_t chan;
if (RC_Channel_aux::find_channel((RC_Channel_aux::Aux_servo_function_t)(RC_Channel_aux::k_motor1+motor_num),
chan)) {
_motor_map[motor_num] = chan;
_motor_map_mask |= 1U<= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
// disable the motor, set all factors to zero
motor_enabled[motor_num] = false;
_roll_factor[motor_num] = 0;
_pitch_factor[motor_num] = 0;
_yaw_factor[motor_num] = 0;
}
}
// remove_all_motors - removes all motor definitions
void AP_MotorsMatrix::remove_all_motors()
{
for( int8_t i=0; i