/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * Code by Andrew Tridgell and Siddharth Bharat Purohit */ #include "RCInput.h" #include "hal.h" #include "hwdef/common/ppm.h" #if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS #if HAL_WITH_IO_MCU #include #include extern AP_IOMCU iomcu; #endif #include #ifndef HAL_NO_UARTDRIVER #include #endif #define SIG_DETECT_TIMEOUT_US 500000 using namespace ChibiOS; extern const AP_HAL::HAL& hal; void RCInput::init() { #ifndef HAL_BUILD_AP_PERIPH AP::RC().init(); #endif #if HAL_USE_ICU == TRUE //attach timer channel on which the signal will be received sig_reader.attach_capture_timer(&RCIN_ICU_TIMER, RCIN_ICU_CHANNEL, STM32_RCIN_DMA_STREAM, STM32_RCIN_DMA_CHANNEL); pulse_input_enabled = true; #endif #if HAL_USE_EICU == TRUE sig_reader.init(&RCININT_EICU_TIMER, RCININT_EICU_CHANNEL); pulse_input_enabled = true; #endif _init = true; } /* enable or disable pulse input for RC input. This is used to reduce load when we are decoding R/C via a UART */ void RCInput::pulse_input_enable(bool enable) { pulse_input_enabled = enable; #if HAL_USE_ICU == TRUE || HAL_USE_EICU == TRUE if (!enable) { sig_reader.disable(); } #endif } bool RCInput::new_input() { if (!_init) { return false; } bool valid; { WITH_SEMAPHORE(rcin_mutex); valid = _rcin_timestamp_last_signal != _last_read; _last_read = _rcin_timestamp_last_signal; } #if HAL_RCINPUT_WITH_AP_RADIO if (!_radio_init) { _radio_init = true; radio = AP_Radio::get_singleton(); if (radio) { radio->init(); } } #endif return valid; } uint8_t RCInput::num_channels() { if (!_init) { return 0; } return _num_channels; } uint16_t RCInput::read(uint8_t channel) { if (!_init || (channel >= MIN(RC_INPUT_MAX_CHANNELS, _num_channels))) { return 0; } uint16_t v; { WITH_SEMAPHORE(rcin_mutex); v = _rc_values[channel]; } #if HAL_RCINPUT_WITH_AP_RADIO if (radio && channel == 0) { // hook to allow for update of radio on main thread, for mavlink sends radio->update(); } #endif return v; } uint8_t RCInput::read(uint16_t* periods, uint8_t len) { if (!_init) { return false; } if (len > RC_INPUT_MAX_CHANNELS) { len = RC_INPUT_MAX_CHANNELS; } { WITH_SEMAPHORE(rcin_mutex); memcpy(periods, _rc_values, len*sizeof(periods[0])); } #if HAL_RCINPUT_WITH_AP_RADIO if (radio) { // hook to allow for update of radio on main thread, for mavlink sends radio->update(); } #endif return len; } void RCInput::_timer_tick(void) { if (!_init) { return; } #ifndef HAL_NO_UARTDRIVER const char *rc_protocol = nullptr; #endif #ifndef HAL_BUILD_AP_PERIPH AP_RCProtocol &rcprot = AP::RC(); #if HAL_USE_ICU == TRUE if (pulse_input_enabled) { const uint32_t *p; uint32_t n; while ((p = (const uint32_t *)sig_reader.sigbuf.readptr(n)) != nullptr) { rcprot.process_pulse_list(p, n*2, sig_reader.need_swap); sig_reader.sigbuf.advance(n); } } #endif #if HAL_USE_EICU == TRUE if (pulse_input_enabled) { uint32_t width_s0, width_s1; while(sig_reader.read(width_s0, width_s1)) { rcprot.process_pulse(width_s0, width_s1); } } #endif if (rcprot.new_input()) { WITH_SEMAPHORE(rcin_mutex); _rcin_timestamp_last_signal = AP_HAL::micros(); _num_channels = rcprot.num_channels(); _num_channels = MIN(_num_channels, RC_INPUT_MAX_CHANNELS); rcprot.read(_rc_values, _num_channels); #ifndef HAL_NO_UARTDRIVER rc_protocol = rcprot.protocol_name(); #endif } #endif // HAL_BUILD_AP_PERIPH #if HAL_RCINPUT_WITH_AP_RADIO if (radio && radio->last_recv_us() != last_radio_us) { last_radio_us = radio->last_recv_us(); WITH_SEMAPHORE(rcin_mutex); _rcin_timestamp_last_signal = last_radio_us; _num_channels = radio->num_channels(); _num_channels = MIN(_num_channels, RC_INPUT_MAX_CHANNELS); for (uint8_t i=0; i<_num_channels; i++) { _rc_values[i] = radio->read(i); } } #endif #if HAL_WITH_IO_MCU { WITH_SEMAPHORE(rcin_mutex); if (AP_BoardConfig::io_enabled() && iomcu.check_rcinput(last_iomcu_us, _num_channels, _rc_values, RC_INPUT_MAX_CHANNELS)) { _rcin_timestamp_last_signal = last_iomcu_us; #ifndef HAL_NO_UARTDRIVER rc_protocol = iomcu.get_rc_protocol(); #endif } } #endif #ifndef HAL_NO_UARTDRIVER if (rc_protocol && rc_protocol != last_protocol) { last_protocol = rc_protocol; gcs().send_text(MAV_SEVERITY_DEBUG, "RCInput: decoding %s", last_protocol); } #endif // note, we rely on the vehicle code checking new_input() // and a timeout for the last valid input to handle failsafe } /* start a bind operation, if supported */ bool RCInput::rc_bind(int dsmMode) { #if HAL_WITH_IO_MCU { WITH_SEMAPHORE(rcin_mutex); if (AP_BoardConfig::io_enabled()) { iomcu.bind_dsm(dsmMode); } } #endif #ifndef HAL_BUILD_AP_PERIPH // ask AP_RCProtocol to start a bind AP::RC().start_bind(); #endif #if HAL_RCINPUT_WITH_AP_RADIO if (radio) { radio->start_recv_bind(); } #endif return true; } #endif //#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS