#include "Plane.h" const AP_Param::GroupInfo QuadPlane::var_info[] = { // @Param: ENABLE // @DisplayName: Enable QuadPlane // @Description: This enables QuadPlane functionality, assuming multicopter motors start on output 5. If this is set to 2 then when starting AUTO mode it will initially be in VTOL AUTO mode. // @Values: 0:Disable,1:Enable,2:Enable VTOL AUTO // @User: Standard AP_GROUPINFO_FLAGS("ENABLE", 1, QuadPlane, enable, 0, AP_PARAM_FLAG_ENABLE), // @Group: M_ // @Path: ../libraries/AP_Motors/AP_MotorsMulticopter.cpp AP_SUBGROUPVARPTR(motors, "M_", 2, QuadPlane, plane.quadplane.motors_var_info), // 3 ~ 8 were used by quadplane attitude control PIDs // @Param: ANGLE_MAX // @DisplayName: Angle Max // @Description: Maximum lean angle in all VTOL flight modes // @Units: cdeg // @Range: 1000 8000 // @User: Advanced AP_GROUPINFO("ANGLE_MAX", 10, QuadPlane, aparm.angle_max, 3000), // @Param: TRANSITION_MS // @DisplayName: Transition time // @Description: Transition time in milliseconds after minimum airspeed is reached // @Units: ms // @Range: 0 30000 // @User: Advanced AP_GROUPINFO("TRANSITION_MS", 11, QuadPlane, transition_time_ms, 5000), // 12 ~ 16 were used by position, velocity and acceleration PIDs // @Group: P // @Path: ../libraries/AC_AttitudeControl/AC_PosControl.cpp AP_SUBGROUPPTR(pos_control, "P", 17, QuadPlane, AC_PosControl), // @Param: VELZ_MAX // @DisplayName: Pilot maximum vertical speed // @Description: The maximum vertical velocity the pilot may request in cm/s // @Units: cm/s // @Range: 50 500 // @Increment: 10 // @User: Standard AP_GROUPINFO("VELZ_MAX", 18, QuadPlane, pilot_velocity_z_max, 250), // @Param: ACCEL_Z // @DisplayName: Pilot vertical acceleration // @Description: The vertical acceleration used when pilot is controlling the altitude // @Units: cm/s/s // @Range: 50 500 // @Increment: 10 // @User: Standard AP_GROUPINFO("ACCEL_Z", 19, QuadPlane, pilot_accel_z, 250), // @Group: WP_ // @Path: ../libraries/AC_WPNav/AC_WPNav.cpp AP_SUBGROUPPTR(wp_nav, "WP_", 20, QuadPlane, AC_WPNav), // @Param: RC_SPEED // @DisplayName: RC output speed in Hz // @Description: This is the PWM refresh rate in Hz for QuadPlane quad motors // @Units: Hz // @Range: 50 500 // @Increment: 10 // @User: Standard AP_GROUPINFO("RC_SPEED", 21, QuadPlane, rc_speed, 490), // @Param: THR_MIN_PWM // @DisplayName: Minimum PWM output // @Description: This is the minimum PWM output for the quad motors // @Units: PWM // @Range: 800 2200 // @Increment: 1 // @User: Standard AP_GROUPINFO("THR_MIN_PWM", 22, QuadPlane, thr_min_pwm, 1000), // @Param: THR_MAX_PWM // @DisplayName: Maximum PWM output // @Description: This is the maximum PWM output for the quad motors // @Units: PWM // @Range: 800 2200 // @Increment: 1 // @User: Standard AP_GROUPINFO("THR_MAX_PWM", 23, QuadPlane, thr_max_pwm, 2000), // @Param: ASSIST_SPEED // @DisplayName: Quadplane assistance speed // @Description: This is the speed below which the quad motors will provide stability and lift assistance in fixed wing modes. Zero means no assistance except during transition // @Units: m/s // @Range: 0 100 // @Increment: 0.1 // @User: Standard AP_GROUPINFO("ASSIST_SPEED", 24, QuadPlane, assist_speed, 0), // @Param: YAW_RATE_MAX // @DisplayName: Maximum yaw rate // @Description: This is the maximum yaw rate for pilot input on rudder stick in degrees/second // @Units: deg/s // @Range: 50 500 // @Increment: 1 // @User: Standard AP_GROUPINFO("YAW_RATE_MAX", 25, QuadPlane, yaw_rate_max, 100), // @Param: LAND_SPEED // @DisplayName: Land speed // @Description: The descent speed for the final stage of landing in cm/s // @Units: cm/s // @Range: 30 200 // @Increment: 10 // @User: Standard AP_GROUPINFO("LAND_SPEED", 26, QuadPlane, land_speed_cms, 50), // @Param: LAND_FINAL_ALT // @DisplayName: Land final altitude // @Description: The altitude at which we should switch to Q_LAND_SPEED descent rate // @Units: m // @Range: 0.5 50 // @Increment: 0.1 // @User: Standard AP_GROUPINFO("LAND_FINAL_ALT", 27, QuadPlane, land_final_alt, 6), // 28 was used by THR_MID // @Param: TRAN_PIT_MAX // @DisplayName: Transition max pitch // @Description: Maximum pitch during transition to auto fixed wing flight // @User: Standard // @Range: 0 30 // @Units: deg // @Increment: 1 AP_GROUPINFO("TRAN_PIT_MAX", 29, QuadPlane, transition_pitch_max, 3), // frame class was moved from 30 when consolidating AP_Motors classes #define FRAME_CLASS_OLD_IDX 30 // @Param: FRAME_CLASS // @DisplayName: Frame Class // @Description: Controls major frame class for multicopter component // @Values: 0:Undefined, 1:Quad, 2:Hexa, 3:Octa, 4:OctaQuad, 5:Y6, 7:Tri, 10: TailSitter // @User: Standard AP_GROUPINFO("FRAME_CLASS", 46, QuadPlane, frame_class, 1), // @Param: FRAME_TYPE // @DisplayName: Frame Type (+, X or V) // @Description: Controls motor mixing for multicopter component // @Values: 0:Plus, 1:X, 2:V, 3:H, 4:V-Tail, 5:A-Tail, 10:Y6B, 11:Y6F, 12:BetaFlightX, 13:DJIX, 14:ClockwiseX, 15: I // @User: Standard AP_GROUPINFO("FRAME_TYPE", 31, QuadPlane, frame_type, 1), // @Param: VFWD_GAIN // @DisplayName: Forward velocity hold gain // @Description: Controls use of forward motor in vtol modes. If this is zero then the forward motor will not be used for position control in VTOL modes. A value of 0.05 is a good place to start if you want to use the forward motor for position control. No forward motor will be used in QSTABILIZE or QHOVER modes. Use QLOITER for position hold with the forward motor. // @Range: 0 0.5 // @Increment: 0.01 // @User: Standard AP_GROUPINFO("VFWD_GAIN", 32, QuadPlane, vel_forward.gain, 0), // @Param: WVANE_GAIN // @DisplayName: Weathervaning gain // @Description: This controls the tendency to yaw to face into the wind. A value of 0.1 is to start with and will give a slow turn into the wind. Use a value of 0.4 for more rapid response. The weathervaning works by turning into the direction of roll. // @Range: 0 1 // @Increment: 0.01 // @User: Standard AP_GROUPINFO("WVANE_GAIN", 33, QuadPlane, weathervane.gain, 0), // @Param: WVANE_MINROLL // @DisplayName: Weathervaning min roll // @Description: This set the minimum roll in degrees before active weathervaning will start. This may need to be larger if your aircraft has bad roll trim. // @Range: 0 10 // @Increment: 0.1 // @User: Standard AP_GROUPINFO("WVANE_MINROLL", 34, QuadPlane, weathervane.min_roll, 1), // @Param: RTL_ALT // @DisplayName: QRTL return altitude // @Description: The altitude which QRTL mode heads to initially // @Units: m // @Range: 1 200 // @Increment: 1 // @User: Standard AP_GROUPINFO("RTL_ALT", 35, QuadPlane, qrtl_alt, 15), // @Param: RTL_MODE // @DisplayName: VTOL RTL mode // @Description: If this is set to 1 then an RTL will change to QRTL when within RTL_RADIUS meters of the RTL destination // @Values: 0:Disabled,1:Enabled // @User: Standard AP_GROUPINFO("RTL_MODE", 36, QuadPlane, rtl_mode, 0), // @Param: TILT_MASK // @DisplayName: Tiltrotor mask // @Description: This is a bitmask of motors that are tiltable in a tiltrotor (or tiltwing). The mask is in terms of the standard motor order for the frame type. // @User: Standard AP_GROUPINFO("TILT_MASK", 37, QuadPlane, tilt.tilt_mask, 0), // @Param: TILT_RATE_UP // @DisplayName: Tiltrotor upwards tilt rate // @Description: This is the maximum speed at which the motor angle will change for a tiltrotor when moving from forward flight to hover // @Units: deg/s // @Increment: 1 // @Range: 10 300 // @User: Standard AP_GROUPINFO("TILT_RATE_UP", 38, QuadPlane, tilt.max_rate_up_dps, 40), // @Param: TILT_MAX // @DisplayName: Tiltrotor maximum VTOL angle // @Description: This is the maximum angle of the tiltable motors at which multicopter control will be enabled. Beyond this angle the plane will fly solely as a fixed wing aircraft and the motors will tilt to their maximum angle at the TILT_RATE // @Units: deg // @Increment: 1 // @Range: 20 80 // @User: Standard AP_GROUPINFO("TILT_MAX", 39, QuadPlane, tilt.max_angle_deg, 45), // @Param: GUIDED_MODE // @DisplayName: Enable VTOL in GUIDED mode // @Description: This enables use of VTOL in guided mode. When enabled the aircraft will switch to VTOL flight when the guided destination is reached and hover at the destination. // @Values: 0:Disabled,1:Enabled // @User: Standard AP_GROUPINFO("GUIDED_MODE", 40, QuadPlane, guided_mode, 0), // 41 was used by THR_MIN // @Param: ESC_CAL // @DisplayName: ESC Calibration // @Description: This is used to calibrate the throttle range of the VTOL motors. Please read http://ardupilot.org/plane/docs/quadplane-esc-calibration.html before using. This parameter is automatically set back to 0 on every boot. This parameter only takes effect in QSTABILIZE mode. When set to 1 the output of all motors will come directly from the throttle stick when armed, and will be zero when disarmed. When set to 2 the output of all motors will be maximum when armed and zero when disarmed. Make sure you remove all properllers before using. // @Values: 0:Disabled,1:ThrottleInput,2:FullInput // @User: Standard AP_GROUPINFO("ESC_CAL", 42, QuadPlane, esc_calibration, 0), // @Param: VFWD_ALT // @DisplayName: Forward velocity alt cutoff // @Description: Controls altitude to disable forward velocity assist when below this relative altitude. This is useful to keep the forward velocity propeller from hitting the ground. Rangefinder height data is incorporated when available. // @Units: m // @Range: 0 10 // @Increment: 0.25 // @User: Standard AP_GROUPINFO("VFWD_ALT", 43, QuadPlane, vel_forward_alt_cutoff, 0), // @Param: LAND_ICE_CUT // @DisplayName: Cut IC engine on landing // @Description: This controls stopping an internal combustion engine in the final landing stage of a VTOL. This is important for aircraft where the forward thrust engine may experience prop-strike if left running during landing. This requires the engine controls are enabled using the ICE_* parameters. // @Values: 0:Disabled,1:Enabled // @User: Standard AP_GROUPINFO("LAND_ICE_CUT", 44, QuadPlane, land_icengine_cut, 1), // @Param: ASSIST_ANGLE // @DisplayName: Quadplane assistance angle // @Description: This is the angular error in attitude beyond which the quadplane VTOL motors will provide stability assistance. This will only be used if Q_ASSIST_SPEED is also non-zero. Assistance will be given if the attitude is outside the normal attitude limits by at least 5 degrees and the angular error in roll or pitch is greater than this angle for at least 1 second. Set to zero to disable angle assistance. // @Units: deg // @Range: 0 90 // @Increment: 1 // @User: Standard AP_GROUPINFO("ASSIST_ANGLE", 45, QuadPlane, assist_angle, 30), // @Param: TILT_TYPE // @DisplayName: Tiltrotor type // @Description: This is the type of tiltrotor when TILT_MASK is non-zero. A continuous tiltrotor can tilt the rotors to any angle on demand. A binary tiltrotor assumes a retract style servo where the servo is either fully forward or fully up. In both cases the servo can't move faster than Q_TILT_RATE. A vectored yaw tiltrotor will use the tilt of the motors to control yaw in hover, Bicopter tiltrottor must use the tailsitter frame class (10) // @Values: 0:Continuous,1:Binary,2:VectoredYaw,3:Bicopter AP_GROUPINFO("TILT_TYPE", 47, QuadPlane, tilt.tilt_type, TILT_TYPE_CONTINUOUS), // @Param: TAILSIT_ANGLE // @DisplayName: Tailsitter transition angle // @Description: This is the angle at which tailsitter aircraft will change from VTOL control to fixed wing control. // @Range: 5 80 AP_GROUPINFO("TAILSIT_ANGLE", 48, QuadPlane, tailsitter.transition_angle, 45), // @Param: TILT_RATE_DN // @DisplayName: Tiltrotor downwards tilt rate // @Description: This is the maximum speed at which the motor angle will change for a tiltrotor when moving from hover to forward flight. When this is zero the Q_TILT_RATE_UP value is used. // @Units: deg/s // @Increment: 1 // @Range: 10 300 // @User: Standard AP_GROUPINFO("TILT_RATE_DN", 49, QuadPlane, tilt.max_rate_down_dps, 0), // @Param: TAILSIT_INPUT // @DisplayName: Tailsitter input type // @Description: This controls whether stick input when hovering as a tailsitter follows the conventions for fixed wing hovering or multicopter hovering. When multicopter input is selected the roll stick will roll the aircraft in earth frame and yaw stick will yaw in earth frame. When using fixed wing input the roll and yaw sticks are swapped so that the roll stick controls earth-frame yaw and rudder controls earth-frame roll. When body-frame roll is selected, the yaw stick controls earth-frame yaw rate and the roll stick controls roll in the tailsitter's body frame. // @Values: 0:MultiCopterInput,1:FixedWingInput,2:BodyFrameRoll_M,3:BodyFrameRoll_P AP_GROUPINFO("TAILSIT_INPUT", 50, QuadPlane, tailsitter.input_type, TAILSITTER_INPUT_MULTICOPTER), // @Param: TAILSIT_MASK // @DisplayName: Tailsitter input mask // @Description: This controls what channels have full manual control when hovering as a tailsitter and the Q_TAILSIT_MASKCH channel in high. This can be used to teach yourself to prop-hang a 3D plane by learning one or more channels at a time. // @Bitmask: 0:Aileron,1:Elevator,2:Throttle,3:Rudder AP_GROUPINFO("TAILSIT_MASK", 51, QuadPlane, tailsitter.input_mask, 0), // @Param: TAILSIT_MASKCH // @DisplayName: Tailsitter input mask channel // @Description: This controls what input channel will activate the Q_TAILSIT_MASK mask. When this channel goes above 1700 then the pilot will have direct manual control of the output channels specified in Q_TAILSIT_MASK. Set to zero to disable. // @Values: 0:Disabled,1:Channel1,2:Channel2,3:Channel3,4:Channel4,5:Channel5,6:Channel6,7:Channel7,8:Channel8 AP_GROUPINFO("TAILSIT_MASKCH", 52, QuadPlane, tailsitter.input_mask_chan, 0), // @Param: TAILSIT_VFGAIN // @DisplayName: Tailsitter vector thrust gain in forward flight // @Description: This controls the amount of vectored thrust control used in forward flight for a vectored tailsitter // @Range: 0 1 // @Increment: 0.01 AP_GROUPINFO("TAILSIT_VFGAIN", 53, QuadPlane, tailsitter.vectored_forward_gain, 0), // @Param: TAILSIT_VHGAIN // @DisplayName: Tailsitter vector thrust gain in hover // @Description: This controls the amount of vectored thrust control used in hover for a vectored tailsitter // @Range: 0 1 // @Increment: 0.01 AP_GROUPINFO("TAILSIT_VHGAIN", 54, QuadPlane, tailsitter.vectored_hover_gain, 0.5), // @Param: TILT_YAW_ANGLE // @DisplayName: Tilt minimum angle for vectored yaw // @Description: This is the angle of the tilt servos when in VTOL mode and at minimum output. This needs to be set for Q_TILT_TYPE=3 to enable vectored control for yaw of tricopter tilt quadplanes. This is also used to limit the forwards travel of bicopter tilts when in VTOL modes // @Range: 0 30 AP_GROUPINFO("TILT_YAW_ANGLE", 55, QuadPlane, tilt.tilt_yaw_angle, 0), // @Param: TAILSIT_VHPOW // @DisplayName: Tailsitter vector thrust gain power // @Description: This controls the amount of extra pitch given to the vectored control when at high pitch errors // @Range: 0 4 // @Increment: 0.1 AP_GROUPINFO("TAILSIT_VHPOW", 56, QuadPlane, tailsitter.vectored_hover_power, 2.5), // @Param: MAV_TYPE // @DisplayName: MAVLink type identifier // @Description: This controls the mavlink type given in HEARTBEAT messages. For some GCS types a particular setting will be needed for correct operation. // @Values: 0:AUTO,1:FIXED_WING,2:QUADROTOR,3:COAXIAL,4:HELICOPTER,7:AIRSHIP,8:FREE_BALLOON,9:ROCKET,10:GROUND_ROVER,11:SURFACE_BOAT,12:SUBMARINE,16:FLAPPING_WING,17:KITE,19:VTOL_DUOROTOR,20:VTOL_QUADROTOR,21:VTOL_TILTROTOR AP_GROUPINFO("MAV_TYPE", 57, QuadPlane, mav_type, 0), // @Param: OPTIONS // @DisplayName: quadplane options // @Description: This provides a set of additional control options for quadplanes. LevelTransition means that the wings should be held level to within LEVEL_ROLL_LIMIT degrees during transition to fixed wing flight, and the vehicle will not use the vertical lift motors to climb during the transition. If AllowFWTakeoff bit is not set then fixed wing takeoff on quadplanes will instead perform a VTOL takeoff. If AllowFWLand bit is not set then fixed wing land on quadplanes will instead perform a VTOL land. If respect takeoff frame is not set the vehicle will interpret all takeoff waypoints as an altitude above the corrent position. When Use QRTL is set it will replace QLAND with QRTL for failsafe actions when in VTOL modes. // @Bitmask: 0:LevelTransition,1:AllowFWTakeoff,2:AllowFWLand,3:Respect takeoff frame types,4:Use a fixed wing approach for VTOL landings,5:Use QRTL instead of QLAND for failsafe when in VTOL modes. AP_GROUPINFO("OPTIONS", 58, QuadPlane, options, 0), AP_SUBGROUPEXTENSION("",59, QuadPlane, var_info2), AP_GROUPEND }; // second table of user settable parameters for quadplanes, this // allows us to go beyond the 64 parameter limit const AP_Param::GroupInfo QuadPlane::var_info2[] = { // @Param: TRANS_DECEL // @DisplayName: Transition deceleration // @Description: This is deceleration rate that will be used in calculating the stopping distance when transitioning from fixed wing flight to multicopter flight. // @Units: m/s/s // @Increment: 0.1 // @Range: 0.2 5 // @User: Standard AP_GROUPINFO("TRANS_DECEL", 1, QuadPlane, transition_decel, 2.0), // @Group: LOIT_ // @Path: ../libraries/AC_WPNav/AC_Loiter.cpp AP_SUBGROUPPTR(loiter_nav, "LOIT_", 2, QuadPlane, AC_Loiter), // @Param: TAILSIT_THSCMX // @DisplayName: Maximum control throttle scaling value // @Description: Maximum value of throttle scaling for tailsitter velocity scaling, reduce this value to remove low thorottle D ossilaitons // @Range: 1 5 // @User: Standard AP_GROUPINFO("TAILSIT_THSCMX", 3, QuadPlane, tailsitter.throttle_scale_max, 5), // @Param: TRIM_PITCH // @DisplayName: Quadplane AHRS trim pitch // @Description: This sets the compensation for the pitch angle trim difference between forward and vertical flight pitch, NOTE! this is relative to forward flight trim not mounting locaiton. For tailsitters this is relative to a baseline of 90 degrees. // @Units: deg // @Range: -10 +10 // @Increment: 0.1 // @User: Advanced // @RebootRequired: True AP_GROUPINFO("TRIM_PITCH", 4, QuadPlane, ahrs_trim_pitch, 0), // @Param: TAILSIT_RLL_MX // @DisplayName: Maximum Roll angle // @Description: Maximum Allowed roll angle for tailsitters. If this is zero then Q_ANGLE_MAX is used. // @Units: deg // @Range: 0 80 // @User: Standard AP_GROUPINFO("TAILSIT_RLL_MX", 5, QuadPlane, tailsitter.max_roll_angle, 0), #if QAUTOTUNE_ENABLED // @Group: AUTOTUNE_ // @Path: qautotune.cpp AP_SUBGROUPINFO(qautotune, "AUTOTUNE_", 6, QuadPlane, QAutoTune), #endif // @Param: FW_LND_APR_RAD // @DisplayName: Quadplane fixed wing landing approach radius // @Description: This provides the radius used, when using a fixed wing landing approach. If set to 0 then the WP_LOITER_RAD will be selected. // @Units: m // @Range: 0 200 // @Increment: 5 // @User: Advanced AP_GROUPINFO("FW_LND_APR_RAD", 7, QuadPlane, fw_land_approach_radius, 0), // @Param: TRANS_FAIL // @DisplayName: Quadplane transition failure time // @Description: Maximum time allowed for forward transitions, exceeding this time will cancel the transition and the aircraft will immediately change to QLAND. 0 for no limit. // @Units: s // @Range: 0 20 // @Increment: 1 // @User: Advanced AP_GROUPINFO("TRANS_FAIL", 8, QuadPlane, transition_failure, 0), // @Param: TAILSIT_MOTMX // @DisplayName: Tailsiter mask // @Description: Bitmask of motors to remain active in forward flight for a 'copter' tailsitter. Non-zero indicates airframe is a tailsitter which pitches forward 90 degrees in forward flight modes. // @User: Standard // @Bitmask: 0:Motor 1,1:Motor 2,2:Motor 3,3:Motor 4, 4:Motor 5,5:Motor 6,6:Motor 7,7:Motor 8 AP_GROUPINFO("TAILSIT_MOTMX", 9, QuadPlane, tailsitter.motor_mask, 0), // @Param: THROTTLE_EXPO // @DisplayName: Throttle expo strength // @Description: Amount of curvature in throttle curve: 0 is linear, 1 is cubic // @Range: 0 1 // @Increment: .1 // @User: Advanced AP_GROUPINFO("THROTTLE_EXPO", 10, QuadPlane, throttle_expo, 0.2), // @Param: ACRO_RLL_RATE // @DisplayName: QACRO mode roll rate // @Description: The maximum roll rate at full stick deflection in QACRO mode // @Units: deg/s // @Range: 10 500 // @Increment: 1 // @User: Standard AP_GROUPINFO("ACRO_RLL_RATE", 11, QuadPlane, acro_roll_rate, 360), // @Param: ACRO_PIT_RATE // @DisplayName: QACRO mode pitch rate // @Description: The maximum pitch rate at full stick deflection in QACRO mode // @Units: deg/s // @Range: 10 500 // @Increment: 1 // @User: Standard AP_GROUPINFO("ACRO_PIT_RATE", 12, QuadPlane, acro_pitch_rate, 180), // @Param: ACRO_YAW_RATE // @DisplayName: QACRO mode yaw rate // @Description: The maximum yaw rate at full stick deflection in QACRO mode // @Units: deg/s // @Range: 10 500 // @Increment: 1 // @User: Standard AP_GROUPINFO("ACRO_YAW_RATE", 13, QuadPlane, acro_yaw_rate, 90), // @Param: TKOFF_FAIL_SCL // @DisplayName: Takeoff time failure scalar // @Description: Scalar for how long past the expected takeoff time a takeoff should be considered as failed and the vehicle will switch to QLAND. If set to 0 there is no limit on takeoff time. // @Range: 1.1 5.0 // @Increment: 5.1 // @User: Advanced AP_GROUPINFO("TKOFF_FAIL_SCL", 14, QuadPlane, takeoff_failure_scalar, 0), // @Param: TKOFF_ARSP_LIM // @DisplayName: Takeoff airspeed limit // @Description: Airspeed limit during takeoff. If the airspeed exceeds this level the vehicle will switch to QLAND. This is useful for ensuring that you don't takeoff into excessively strong wind. If set to 0 there is no limit on airspeed during takeoff. // @Units: m/s // @Range: 0 20 // @Increment: 1 // @User: Advanced AP_GROUPINFO("TKOFF_ARSP_LIM", 15, QuadPlane, maximum_takeoff_airspeed, 0), // @Param: ASSIST_ALT // @DisplayName: Quadplane assistance altitude // @Description: This is the altitude below which quadplane assistance will be triggered. This acts the same way as Q_ASSIST_ANGLE and Q_ASSIST_SPEED, but triggers if the aircraft drops below the given altitude while the VTOL motors are not running. A value of zero disables this feature. The altutude is calculated as being above ground level. The height above ground is given from a Lidar used if available and RNGFND_LANDING=1. Otherwise it comes from terrain data if TERRAIN_FOLLOW=1 and comes from height above home otherwise. // @Units: m // @Range: 0 120 // @Increment: 1 // @User: Standard AP_GROUPINFO("ASSIST_ALT", 16, QuadPlane, assist_alt, 0), AP_GROUPEND }; /* defaults for all quadplanes */ static const struct AP_Param::defaults_table_struct defaults_table[] = { { "Q_A_RAT_RLL_P", 0.25 }, { "Q_A_RAT_RLL_I", 0.25 }, { "Q_A_RAT_RLL_FLTD", 10.0 }, { "Q_A_RAT_PIT_P", 0.25 }, { "Q_A_RAT_PIT_I", 0.25 }, { "Q_A_RAT_PIT_FLTD", 10.0 }, { "Q_M_SPOOL_TIME", 0.25 }, { "Q_LOIT_ANG_MAX", 15.0 }, { "Q_LOIT_ACC_MAX", 250.0 }, { "Q_LOIT_BRK_ACCEL", 50.0 }, { "Q_LOIT_BRK_JERK", 250 }, { "Q_LOIT_SPEED", 500 }, }; /* extra defaults for tailsitters */ static const struct AP_Param::defaults_table_struct defaults_table_tailsitter[] = { { "KFF_RDDRMIX", 0.02 }, { "Q_A_RAT_PIT_FF", 0.2 }, { "Q_A_RAT_YAW_FF", 0.2 }, { "Q_A_RAT_YAW_I", 0.18 }, { "Q_A_ANGLE_BOOST", 0 }, { "LIM_PITCH_MAX", 3000 }, { "LIM_PITCH_MIN", -3000 }, { "MIXING_GAIN", 1.0 }, { "RUDD_DT_GAIN", 10 }, { "Q_TRANSITION_MS", 2000 }, }; /* conversion table for quadplane parameters */ const AP_Param::ConversionInfo q_conversion_table[] = { { Parameters::k_param_quadplane, 4044, AP_PARAM_FLOAT, "Q_P_POSZ_P" }, // Q_PZ_P { Parameters::k_param_quadplane, 4045, AP_PARAM_FLOAT, "Q_P_POSXY_P"}, // Q_PXY_P { Parameters::k_param_quadplane, 4046, AP_PARAM_FLOAT, "Q_P_VELXY_P"}, // Q_VXY_P { Parameters::k_param_quadplane, 78, AP_PARAM_FLOAT, "Q_P_VELXY_I"}, // Q_VXY_I { Parameters::k_param_quadplane, 142, AP_PARAM_FLOAT, "Q_P_VELXY_IMAX"}, // Q_VXY_IMAX { Parameters::k_param_quadplane, 206, AP_PARAM_FLOAT, "Q_P_VELXY_FILT"}, // Q_VXY_FILT_HZ { Parameters::k_param_quadplane, 4047, AP_PARAM_FLOAT, "Q_P_VELZ_P"}, // Q_VZ_P { Parameters::k_param_quadplane, 4048, AP_PARAM_FLOAT, "Q_P_ACCZ_P"}, // Q_AZ_P { Parameters::k_param_quadplane, 80, AP_PARAM_FLOAT, "Q_P_ACCZ_I"}, // Q_AZ_I { Parameters::k_param_quadplane, 144, AP_PARAM_FLOAT, "Q_P_ACCZ_D"}, // Q_AZ_D { Parameters::k_param_quadplane, 336, AP_PARAM_FLOAT, "Q_P_ACCZ_IMAX"}, // Q_AZ_IMAX { Parameters::k_param_quadplane, 400, AP_PARAM_FLOAT, "Q_P_ACCZ_FLTD"}, // Q_AZ_FILT { Parameters::k_param_quadplane, 464, AP_PARAM_FLOAT, "Q_P_ACCZ_FF"}, // Q_AZ_FF { Parameters::k_param_quadplane, 276, AP_PARAM_FLOAT, "Q_LOIT_SPEED"}, // Q_WP_LOIT_SPEED { Parameters::k_param_quadplane, 468, AP_PARAM_FLOAT, "Q_LOIT_BRK_JERK" },// Q_WP_LOIT_JERK { Parameters::k_param_quadplane, 532, AP_PARAM_FLOAT, "Q_LOIT_ACC_MAX" }, // Q_WP_LOIT_MAXA { Parameters::k_param_quadplane, 596, AP_PARAM_FLOAT, "Q_LOIT_BRK_ACCEL" },// Q_WP_LOIT_MINA { Parameters::k_param_q_attitude_control, 385, AP_PARAM_FLOAT, "Q_A_RAT_RLL_FLTD" },// Q_A_RAT_RLL_FILT { Parameters::k_param_q_attitude_control, 386, AP_PARAM_FLOAT, "Q_A_RAT_PIT_FLTD" },// Q_A_RAT_PIT_FILT { Parameters::k_param_q_attitude_control, 387, AP_PARAM_FLOAT, "Q_A_RAT_YAW_FLTE" },// Q_A_RAT_YAW_FILT { Parameters::k_param_q_attitude_control, 449, AP_PARAM_FLOAT, "Q_A_RAT_RLL_FF" }, // Q_A_RAT_RLL_FF { Parameters::k_param_q_attitude_control, 450, AP_PARAM_FLOAT, "Q_A_RAT_PIT_FF" }, // Q_A_RAT_PIT_FF { Parameters::k_param_q_attitude_control, 451, AP_PARAM_FLOAT, "Q_A_RAT_YAW_FF" }, // Q_A_RAT_YAW_FILT }; QuadPlane::QuadPlane(AP_AHRS_NavEKF &_ahrs) : ahrs(_ahrs) { AP_Param::setup_object_defaults(this, var_info); AP_Param::setup_object_defaults(this, var_info2); } // setup default motors for the frame class void QuadPlane::setup_default_channels(uint8_t num_motors) { for (uint8_t i=0; iget_soft_armed()) { return false; } float loop_delta_t = 1.0 / plane.scheduler.get_loop_rate_hz(); enum AP_Motors::motor_frame_class motor_class; enum Rotation rotation = ROTATION_NONE; /* cope with upgrade from old AP_Motors values for frame_class */ AP_Int8 old_class; const AP_Param::ConversionInfo cinfo { Parameters::k_param_quadplane, FRAME_CLASS_OLD_IDX, AP_PARAM_INT8, nullptr }; if (AP_Param::find_old_parameter(&cinfo, &old_class) && !frame_class.load()) { uint8_t new_value = 0; // map from old values to new values switch (old_class.get()) { case 0: new_value = AP_Motors::MOTOR_FRAME_QUAD; break; case 1: new_value = AP_Motors::MOTOR_FRAME_HEXA; break; case 2: new_value = AP_Motors::MOTOR_FRAME_OCTA; break; case 3: new_value = AP_Motors::MOTOR_FRAME_OCTAQUAD; break; case 4: new_value = AP_Motors::MOTOR_FRAME_Y6; break; } frame_class.set_and_save(new_value); } if (hal.util->available_memory() < 4096 + sizeof(*motors) + sizeof(*attitude_control) + sizeof(*pos_control) + sizeof(*wp_nav) + sizeof(*ahrs_view) + sizeof(*loiter_nav)) { gcs().send_text(MAV_SEVERITY_INFO, "Not enough memory for quadplane"); goto failed; } /* dynamically allocate the key objects for quadplane. This ensures that the objects don't affect the vehicle unless enabled and also saves memory when not in use */ motor_class = (enum AP_Motors::motor_frame_class)frame_class.get(); switch (motor_class) { case AP_Motors::MOTOR_FRAME_QUAD: setup_default_channels(4); break; case AP_Motors::MOTOR_FRAME_HEXA: setup_default_channels(6); break; case AP_Motors::MOTOR_FRAME_OCTA: case AP_Motors::MOTOR_FRAME_OCTAQUAD: setup_default_channels(8); break; case AP_Motors::MOTOR_FRAME_Y6: setup_default_channels(7); break; case AP_Motors::MOTOR_FRAME_TRI: SRV_Channels::set_default_function(CH_5, SRV_Channel::k_motor1); SRV_Channels::set_default_function(CH_6, SRV_Channel::k_motor2); SRV_Channels::set_default_function(CH_8, SRV_Channel::k_motor4); SRV_Channels::set_default_function(CH_11, SRV_Channel::k_motor7); AP_Param::set_frame_type_flags(AP_PARAM_FRAME_TRICOPTER); break; case AP_Motors::MOTOR_FRAME_TAILSITTER: break; default: hal.console->printf("Unknown frame class %u - using QUAD\n", (unsigned)frame_class.get()); frame_class.set(AP_Motors::MOTOR_FRAME_QUAD); setup_default_channels(4); break; } if (tailsitter.motor_mask == 0) { // this is a normal quadplane switch (motor_class) { case AP_Motors::MOTOR_FRAME_TRI: motors = new AP_MotorsTri(plane.scheduler.get_loop_rate_hz(), rc_speed); motors_var_info = AP_MotorsTri::var_info; break; case AP_Motors::MOTOR_FRAME_TAILSITTER: // this is a duo-motor tailsitter (vectored thrust if tilt.tilt_mask != 0) motors = new AP_MotorsTailsitter(plane.scheduler.get_loop_rate_hz(), rc_speed); motors_var_info = AP_MotorsTailsitter::var_info; if (tilt.tilt_type != TILT_TYPE_BICOPTER) { rotation = ROTATION_PITCH_90; } break; default: motors = new AP_MotorsMatrix(plane.scheduler.get_loop_rate_hz(), rc_speed); motors_var_info = AP_MotorsMatrix::var_info; break; } } else { // this is a copter tailsitter with motor layout specified by frame_class and frame_type // tilting motors are not supported (tiltrotor control variables are ignored) if (tilt.tilt_mask != 0) { hal.console->printf("Warning tilting motors not supported, setting tilt_mask to zero\n"); tilt.tilt_mask.set(0); } rotation = ROTATION_PITCH_90; motors = new AP_MotorsMatrixTS(plane.scheduler.get_loop_rate_hz(), rc_speed); motors_var_info = AP_MotorsMatrixTS::var_info; } const static char *strUnableToAllocate = "Unable to allocate"; if (!motors) { hal.console->printf("%s motors\n", strUnableToAllocate); goto failed; } AP_Param::load_object_from_eeprom(motors, motors_var_info); // create the attitude view used by the VTOL code ahrs_view = ahrs.create_view(rotation, ahrs_trim_pitch); if (ahrs_view == nullptr) { goto failed; } attitude_control = new AC_AttitudeControl_Multi(*ahrs_view, aparm, *motors, loop_delta_t); if (!attitude_control) { hal.console->printf("%s attitude_control\n", strUnableToAllocate); goto failed; } AP_Param::load_object_from_eeprom(attitude_control, attitude_control->var_info); pos_control = new AC_PosControl(*ahrs_view, inertial_nav, *motors, *attitude_control); if (!pos_control) { hal.console->printf("%s pos_control\n", strUnableToAllocate); goto failed; } AP_Param::load_object_from_eeprom(pos_control, pos_control->var_info); wp_nav = new AC_WPNav(inertial_nav, *ahrs_view, *pos_control, *attitude_control); if (!wp_nav) { hal.console->printf("%s wp_nav\n", strUnableToAllocate); goto failed; } AP_Param::load_object_from_eeprom(wp_nav, wp_nav->var_info); loiter_nav = new AC_Loiter(inertial_nav, *ahrs_view, *pos_control, *attitude_control); if (!loiter_nav) { hal.console->printf("%s loiter_nav\n", strUnableToAllocate); goto failed; } AP_Param::load_object_from_eeprom(loiter_nav, loiter_nav->var_info); motors->init((AP_Motors::motor_frame_class)frame_class.get(), (AP_Motors::motor_frame_type)frame_type.get()); motors->set_throttle_range(thr_min_pwm, thr_max_pwm); motors->set_update_rate(rc_speed); motors->set_interlock(true); pos_control->set_dt(loop_delta_t); attitude_control->parameter_sanity_check(); // setup the trim of any motors used by AP_Motors so I/O board // failsafe will disable motors for (uint8_t i=0; i<8; i++) { SRV_Channel::Aux_servo_function_t func = SRV_Channels::get_motor_function(i); SRV_Channels::set_failsafe_pwm(func, thr_min_pwm); } transition_state = TRANSITION_DONE; if (tilt.tilt_mask != 0) { // setup tilt compensation motors->set_thrust_compensation_callback(FUNCTOR_BIND_MEMBER(&QuadPlane::tilt_compensate, void, float *, uint8_t)); if (tilt.tilt_type == TILT_TYPE_VECTORED_YAW) { // setup tilt servos for vectored yaw SRV_Channels::set_range(SRV_Channel::k_tiltMotorLeft, 1000); SRV_Channels::set_range(SRV_Channel::k_tiltMotorRight, 1000); } } setup_defaults(); AP_Param::convert_old_parameters(&q_conversion_table[0], ARRAY_SIZE(q_conversion_table)); gcs().send_text(MAV_SEVERITY_INFO, "QuadPlane initialised"); initialised = true; return true; failed: initialised = false; enable.set(0); gcs().send_text(MAV_SEVERITY_INFO, "QuadPlane setup failed"); return false; } /* setup default parameters from defaults_table */ void QuadPlane::setup_defaults(void) { AP_Param::set_defaults_from_table(defaults_table, ARRAY_SIZE(defaults_table)); enum AP_Motors::motor_frame_class motor_class; motor_class = (enum AP_Motors::motor_frame_class)frame_class.get(); if (motor_class == AP_Motors::MOTOR_FRAME_TAILSITTER) { AP_Param::set_defaults_from_table(defaults_table_tailsitter, ARRAY_SIZE(defaults_table_tailsitter)); } // reset ESC calibration if (esc_calibration != 0) { esc_calibration.set_and_save(0); } } // run ESC calibration void QuadPlane::run_esc_calibration(void) { if (!motors->armed()) { motors->set_throttle_passthrough_for_esc_calibration(0); AP_Notify::flags.esc_calibration = false; return; } if (!AP_Notify::flags.esc_calibration) { gcs().send_text(MAV_SEVERITY_INFO, "Starting ESC calibration"); } AP_Notify::flags.esc_calibration = true; switch (esc_calibration) { case 1: // throttle based calibration motors->set_throttle_passthrough_for_esc_calibration(plane.get_throttle_input() * 0.01f); break; case 2: // full range calibration motors->set_throttle_passthrough_for_esc_calibration(1); break; } } // init quadplane stabilize mode void QuadPlane::init_stabilize(void) { throttle_wait = false; } /* ask the multicopter attitude control to match the roll and pitch rates being demanded by the fixed wing controller if not in a pure VTOL mode */ void QuadPlane::multicopter_attitude_rate_update(float yaw_rate_cds) { check_attitude_relax(); // tailsitter-only bodyframe roll control options if (is_tailsitter()) { if (tailsitter.input_type == TAILSITTER_INPUT_BF_ROLL_M) { // Angle mode attitude control for pitch and body-frame roll, rate control for yaw. // this version interprets the first argument as yaw rate and the third as roll angle // because it is intended to be used with Q_TAILSIT_INPUT=1 where the roll and yaw sticks // act in the tailsitter's body frame (i.e. roll is MC/earth frame yaw and // yaw is MC/earth frame roll) attitude_control->input_euler_rate_yaw_euler_angle_pitch_bf_roll_m(plane.nav_roll_cd, plane.nav_pitch_cd, yaw_rate_cds); return; } else if (tailsitter.input_type == TAILSITTER_INPUT_BF_ROLL_P) { attitude_control->input_euler_rate_yaw_euler_angle_pitch_bf_roll_p(plane.nav_roll_cd, plane.nav_pitch_cd, yaw_rate_cds); return; } } // normal control modes for VTOL and FW flight if (in_vtol_mode() || is_tailsitter()) { // use euler angle attitude control attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(plane.nav_roll_cd, plane.nav_pitch_cd, yaw_rate_cds); } else { // use the fixed wing desired rates float roll_rate = plane.rollController.get_pid_info().target; float pitch_rate = plane.pitchController.get_pid_info().target; attitude_control->input_rate_bf_roll_pitch_yaw_2(roll_rate*100.0f, pitch_rate*100.0f, yaw_rate_cds); } } // hold in stabilize with given throttle void QuadPlane::hold_stabilize(float throttle_in) { // call attitude controller multicopter_attitude_rate_update(get_desired_yaw_rate_cds()); if (throttle_in <= 0) { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); attitude_control->set_throttle_out(0, true, 0); if (!is_tailsitter()) { // always stabilize with tailsitters so we can do belly takeoffs attitude_control->relax_attitude_controllers(); } } else { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); attitude_control->set_throttle_out(throttle_in, true, 0); } } // quadplane stabilize mode void QuadPlane::control_stabilize(void) { // special check for ESC calibration in QSTABILIZE if (esc_calibration != 0) { run_esc_calibration(); return; } // normal QSTABILIZE mode float pilot_throttle_scaled = get_pilot_throttle(); hold_stabilize(pilot_throttle_scaled); } // run the multicopter Z controller void QuadPlane::run_z_controller(void) { const uint32_t now = AP_HAL::millis(); if (now - last_pidz_active_ms > 2000) { // set alt target to current height on transition. This // starts the Z controller off with the right values gcs().send_text(MAV_SEVERITY_INFO, "Reset alt target to %.1f", (double)inertial_nav.get_altitude() / 100); set_alt_target_current(); pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z()); // initialize vertical speeds and leash lengths pos_control->set_max_speed_z(-pilot_velocity_z_max, pilot_velocity_z_max); pos_control->set_max_accel_z(pilot_accel_z); // it has been two seconds since we last ran the Z // controller. We need to assume the integrator may be way off // the base throttle we start at is the current throttle we are using // note that AC_PosControl::run_z_controller() adds the Z pid (_pid_accel_z) output to _motors.get_throttle_hover() float base_throttle = constrain_float(motors->get_throttle() - motors->get_throttle_hover(), -1, 1) * 1000; pos_control->get_accel_z_pid().set_integrator(base_throttle); last_pidz_init_ms = now; } last_pidz_active_ms = now; pos_control->update_z_controller(); } /* check if we should relax the attitude controllers We relax them whenever we will be using them after a period of inactivity */ void QuadPlane::check_attitude_relax(void) { uint32_t now = AP_HAL::millis(); if (now - last_att_control_ms > 100) { attitude_control->relax_attitude_controllers(); } last_att_control_ms = now; } /* init QACRO mode */ void QuadPlane::init_qacro(void) { throttle_wait = false; transition_state = TRANSITION_DONE; attitude_control->relax_attitude_controllers(); } // init quadplane hover mode void QuadPlane::init_hover(void) { // initialize vertical speeds and leash lengths pos_control->set_max_speed_z(-pilot_velocity_z_max, pilot_velocity_z_max); pos_control->set_max_accel_z(pilot_accel_z); // initialise position and desired velocity set_alt_target_current(); pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z()); init_throttle_wait(); } /* check for an EKF yaw reset */ void QuadPlane::check_yaw_reset(void) { if (!initialised) { return; } float yaw_angle_change_rad = 0.0f; uint32_t new_ekfYawReset_ms = ahrs.getLastYawResetAngle(yaw_angle_change_rad); if (new_ekfYawReset_ms != ekfYawReset_ms) { attitude_control->inertial_frame_reset(); ekfYawReset_ms = new_ekfYawReset_ms; gcs().send_text(MAV_SEVERITY_INFO, "EKF yaw reset %.2f", (double)degrees(yaw_angle_change_rad)); } } /* hold hover with target climb rate */ void QuadPlane::hold_hover(float target_climb_rate) { // motors use full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // initialize vertical speeds and acceleration pos_control->set_max_speed_z(-pilot_velocity_z_max, pilot_velocity_z_max); pos_control->set_max_accel_z(pilot_accel_z); // call attitude controller multicopter_attitude_rate_update(get_desired_yaw_rate_cds()); // call position controller pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, plane.G_Dt, false); run_z_controller(); } float QuadPlane::get_pilot_throttle() { // get scaled throttle input float throttle_in = plane.channel_throttle->get_control_in(); // normalize to [0,1] throttle_in /= plane.channel_throttle->get_range(); if (is_positive(throttle_expo)) { // get hover throttle level [0,1] float thr_mid = motors->get_throttle_hover(); float thrust_curve_expo = constrain_float(throttle_expo, 0.0f, 1.0f); // this puts mid stick at hover throttle return throttle_curve(thr_mid, thrust_curve_expo, throttle_in);; } else { return throttle_in; } } /* control QACRO mode */ void QuadPlane::control_qacro(void) { if (throttle_wait) { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); attitude_control->set_throttle_out(0, true, 0); attitude_control->relax_attitude_controllers(); } else { check_attitude_relax(); motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // convert the input to the desired body frame rate float target_roll = 0; float target_pitch = plane.channel_pitch->norm_input() * acro_pitch_rate * 100.0f; float target_yaw = 0; if (is_tailsitter()) { // Note that the 90 degree Y rotation for copter mode swaps body-frame roll and yaw // acro_roll_rate param applies to yaw in copter frame target_roll = plane.channel_rudder->norm_input() * acro_roll_rate * 100.0f; target_yaw = -plane.channel_roll->norm_input() * acro_yaw_rate * 100.0f; } else { target_roll = plane.channel_roll->norm_input() * acro_roll_rate * 100.0f; target_yaw = plane.channel_rudder->norm_input() * acro_yaw_rate * 100.0; } float throttle_out = get_pilot_throttle(); // run attitude controller if (plane.g.acro_locking) { attitude_control->input_rate_bf_roll_pitch_yaw_3(target_roll, target_pitch, target_yaw); } else { attitude_control->input_rate_bf_roll_pitch_yaw_2(target_roll, target_pitch, target_yaw); } // output pilot's throttle without angle boost attitude_control->set_throttle_out(throttle_out, false, 10.0f); } } /* control QHOVER mode */ void QuadPlane::control_hover(void) { if (throttle_wait) { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); attitude_control->set_throttle_out(0, true, 0); attitude_control->relax_attitude_controllers(); pos_control->relax_alt_hold_controllers(0); } else { hold_hover(get_pilot_desired_climb_rate_cms()); } } void QuadPlane::init_loiter(void) { // initialise loiter loiter_nav->clear_pilot_desired_acceleration(); loiter_nav->init_target(); // initialize vertical speed and acceleration pos_control->set_max_speed_z(-pilot_velocity_z_max, pilot_velocity_z_max); pos_control->set_max_accel_z(pilot_accel_z); // initialise position and desired velocity set_alt_target_current(); pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z()); init_throttle_wait(); // remember initial pitch loiter_initial_pitch_cd = MAX(plane.ahrs.pitch_sensor, 0); // prevent re-init of target position last_loiter_ms = AP_HAL::millis(); } void QuadPlane::init_qland(void) { init_loiter(); throttle_wait = false; poscontrol.state = QPOS_LAND_DESCEND; landing_detect.lower_limit_start_ms = 0; landing_detect.land_start_ms = 0; #if LANDING_GEAR_ENABLED == ENABLED plane.g2.landing_gear.deploy_for_landing(); #endif } // helper for is_flying() bool QuadPlane::is_flying(void) { if (!available()) { return false; } if (plane.control_mode == &plane.mode_guided && guided_takeoff) { return true; } if (motors->get_throttle() > 0.01f && !motors->limit.throttle_lower) { return true; } if (in_tailsitter_vtol_transition()) { return true; } return false; } // crude landing detector to prevent tipover bool QuadPlane::should_relax(void) { const uint32_t tnow = millis(); bool motor_at_lower_limit = motors->limit.throttle_lower && attitude_control->is_throttle_mix_min(); if (motors->get_throttle() < 0.01f) { motor_at_lower_limit = true; } if (!motor_at_lower_limit) { landing_detect.lower_limit_start_ms = 0; landing_detect.land_start_ms = 0; return false; } else if (landing_detect.lower_limit_start_ms == 0) { landing_detect.lower_limit_start_ms = tnow; } return (tnow - landing_detect.lower_limit_start_ms) > 1000; } // see if we are flying in vtol bool QuadPlane::is_flying_vtol(void) const { if (!available()) { return false; } if (motors->get_spool_state() == AP_Motors::SpoolState::SHUT_DOWN) { // assume that with no motor outputs we're not flying in VTOL mode return false; } if (motors->get_throttle() > 0.01f) { // if we are demanding more than 1% throttle then don't consider aircraft landed return true; } if (plane.control_mode == &plane.mode_qacro) { return true; } if (plane.control_mode == &plane.mode_guided && guided_takeoff) { return true; } if (plane.control_mode == &plane.mode_qstabilize || plane.control_mode == &plane.mode_qhover || plane.control_mode == &plane.mode_qloiter || plane.control_mode == &plane.mode_qautotune) { // in manual flight modes only consider aircraft landed when pilot demanded throttle is zero return plane.get_throttle_input() > 0; } if (in_vtol_mode() && millis() - landing_detect.lower_limit_start_ms > 5000) { // use landing detector return true; } return false; } /* smooth out descent rate for landing to prevent a jerk as we get to land_final_alt. */ float QuadPlane::landing_descent_rate_cms(float height_above_ground) const { float ret = linear_interpolate(land_speed_cms, wp_nav->get_default_speed_down(), height_above_ground, land_final_alt, land_final_alt+6); return ret; } // run quadplane loiter controller void QuadPlane::control_loiter() { if (throttle_wait) { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); attitude_control->set_throttle_out(0, true, 0); attitude_control->relax_attitude_controllers(); pos_control->relax_alt_hold_controllers(0); loiter_nav->clear_pilot_desired_acceleration(); loiter_nav->init_target(); return; } check_attitude_relax(); if (should_relax()) { loiter_nav->soften_for_landing(); } const uint32_t now = AP_HAL::millis(); if (now - last_loiter_ms > 500) { loiter_nav->clear_pilot_desired_acceleration(); loiter_nav->init_target(); } last_loiter_ms = now; // motors use full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // initialize vertical speed and acceleration pos_control->set_max_speed_z(-pilot_velocity_z_max, pilot_velocity_z_max); pos_control->set_max_accel_z(pilot_accel_z); // process pilot's roll and pitch input loiter_nav->set_pilot_desired_acceleration(plane.channel_roll->get_control_in(), plane.channel_pitch->get_control_in(), plane.G_Dt); // run loiter controller loiter_nav->update(); // nav roll and pitch are controller by loiter controller plane.nav_roll_cd = loiter_nav->get_roll(); plane.nav_pitch_cd = loiter_nav->get_pitch(); if (now - last_pidz_init_ms < (uint32_t)transition_time_ms*2 && !is_tailsitter()) { // we limit pitch during initial transition float pitch_limit_cd = linear_interpolate(loiter_initial_pitch_cd, aparm.angle_max, now, last_pidz_init_ms, last_pidz_init_ms+transition_time_ms*2); if (plane.nav_pitch_cd > pitch_limit_cd) { plane.nav_pitch_cd = pitch_limit_cd; pos_control->set_limit_accel_xy(); } } // call attitude controller with conservative smoothing gain of 4.0f attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(plane.nav_roll_cd, plane.nav_pitch_cd, get_desired_yaw_rate_cds()); if (plane.control_mode == &plane.mode_qland) { if (poscontrol.state < QPOS_LAND_FINAL && check_land_final()) { poscontrol.state = QPOS_LAND_FINAL; // cut IC engine if enabled if (land_icengine_cut != 0) { plane.g2.ice_control.engine_control(0, 0, 0); } } float height_above_ground = plane.relative_ground_altitude(plane.g.rangefinder_landing); float descent_rate = (poscontrol.state == QPOS_LAND_FINAL)? land_speed_cms:landing_descent_rate_cms(height_above_ground); pos_control->set_alt_target_from_climb_rate(-descent_rate, plane.G_Dt, true); check_land_complete(); } else if (plane.control_mode == &plane.mode_guided && guided_takeoff) { pos_control->set_alt_target_from_climb_rate_ff(0, plane.G_Dt, false); } else { // update altitude target and call position controller pos_control->set_alt_target_from_climb_rate_ff(get_pilot_desired_climb_rate_cms(), plane.G_Dt, false); } run_z_controller(); } /* get pilot input yaw rate in cd/s */ float QuadPlane::get_pilot_input_yaw_rate_cds(void) const { if (plane.get_throttle_input() <= 0 && !plane.auto_throttle_mode && plane.arming.get_rudder_arming_type() != AP_Arming::RudderArming::IS_DISABLED) { // the user may be trying to disarm return 0; } // add in rudder input return plane.channel_rudder->get_control_in() * yaw_rate_max / 45; } /* get overall desired yaw rate in cd/s */ float QuadPlane::get_desired_yaw_rate_cds(void) { float yaw_cds = 0; if (assisted_flight) { // use bank angle to get desired yaw rate yaw_cds += desired_auto_yaw_rate_cds(); } if (plane.get_throttle_input() <= 0 && !plane.auto_throttle_mode) { // the user may be trying to disarm return 0; } // add in pilot input yaw_cds += get_pilot_input_yaw_rate_cds(); // add in weathervaning yaw_cds += get_weathervane_yaw_rate_cds(); return yaw_cds; } // get pilot desired climb rate in cm/s float QuadPlane::get_pilot_desired_climb_rate_cms(void) const { if (plane.failsafe.rc_failsafe || plane.failsafe.throttle_counter > 0) { // descend at 0.5m/s for now return -50; } uint16_t dead_zone = plane.channel_throttle->get_dead_zone(); uint16_t trim = (plane.channel_throttle->get_radio_max() + plane.channel_throttle->get_radio_min())/2; return pilot_velocity_z_max * plane.channel_throttle->pwm_to_angle_dz_trim(dead_zone, trim) / 100.0f; } /* initialise throttle_wait based on throttle and is_flying() */ void QuadPlane::init_throttle_wait(void) { if (plane.get_throttle_input() >= 10 || plane.is_flying()) { throttle_wait = false; } else { throttle_wait = true; } } // set motor arming void QuadPlane::set_armed(bool armed) { if (!initialised) { return; } motors->armed(armed); } /* estimate desired climb rate for assistance (in cm/s) */ float QuadPlane::assist_climb_rate_cms(void) const { float climb_rate; if (plane.auto_throttle_mode) { // use altitude_error_cm, spread over 10s interval climb_rate = plane.altitude_error_cm * 0.1f; } else { // otherwise estimate from pilot input climb_rate = plane.g.flybywire_climb_rate * (plane.nav_pitch_cd/(float)plane.aparm.pitch_limit_max_cd); climb_rate *= plane.get_throttle_input(); } climb_rate = constrain_float(climb_rate, -wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up()); // bring in the demanded climb rate over 2 seconds const uint32_t ramp_up_time_ms = 2000; const uint32_t dt_since_start = last_pidz_active_ms - last_pidz_init_ms; if (dt_since_start < ramp_up_time_ms) { climb_rate = linear_interpolate(0, climb_rate, dt_since_start, 0, ramp_up_time_ms); } return climb_rate; } /* calculate desired yaw rate for assistance */ float QuadPlane::desired_auto_yaw_rate_cds(void) const { float aspeed; if (!ahrs.airspeed_estimate(&aspeed) || aspeed < plane.aparm.airspeed_min) { aspeed = plane.aparm.airspeed_min; } if (aspeed < 1) { aspeed = 1; } float yaw_rate = degrees(GRAVITY_MSS * tanf(radians(plane.nav_roll_cd*0.01f))/aspeed) * 100; return yaw_rate; } /* return true if the quadplane should provide stability assistance */ bool QuadPlane::assistance_needed(float aspeed) { if (assist_speed <= 0) { // assistance disabled in_angle_assist = false; angle_error_start_ms = 0; return false; } if (aspeed < assist_speed) { // assistance due to Q_ASSIST_SPEED in_angle_assist = false; angle_error_start_ms = 0; return true; } const uint32_t now = AP_HAL::millis(); /* optional assistance when altitude is too close to the ground */ if (assist_alt > 0) { float height_above_ground = plane.relative_ground_altitude(plane.g.rangefinder_landing); if (height_above_ground < assist_alt) { if (alt_error_start_ms == 0) { alt_error_start_ms = now; } if (now - alt_error_start_ms > 500) { // we've been below assistant alt for 0.5s if (!in_alt_assist) { in_alt_assist = true; gcs().send_text(MAV_SEVERITY_INFO, "Alt assist %.1fm", height_above_ground); } return true; } } else { in_alt_assist = false; alt_error_start_ms = 0; } } if (assist_angle <= 0) { in_angle_assist = false; angle_error_start_ms = 0; return false; } /* now check if we should provide assistance due to attitude error */ const uint16_t allowed_envelope_error_cd = 500U; if (labs(ahrs.roll_sensor) <= plane.aparm.roll_limit_cd+allowed_envelope_error_cd && ahrs.pitch_sensor < plane.aparm.pitch_limit_max_cd+allowed_envelope_error_cd && ahrs.pitch_sensor > -(allowed_envelope_error_cd-plane.aparm.pitch_limit_min_cd)) { // we are inside allowed attitude envelope in_angle_assist = false; angle_error_start_ms = 0; return false; } int32_t max_angle_cd = 100U*assist_angle; if ((labs(ahrs.roll_sensor - plane.nav_roll_cd) < max_angle_cd && labs(ahrs.pitch_sensor - plane.nav_pitch_cd) < max_angle_cd)) { // not beyond angle error angle_error_start_ms = 0; in_angle_assist = false; return false; } if (angle_error_start_ms == 0) { angle_error_start_ms = now; } bool ret = (now - angle_error_start_ms) >= 1000U; if (ret && !in_angle_assist) { in_angle_assist = true; gcs().send_text(MAV_SEVERITY_INFO, "Angle assist r=%d p=%d", (int)(ahrs.roll_sensor/100), (int)(ahrs.pitch_sensor/100)); } return ret; } /* update for transition from quadplane to fixed wing mode */ void QuadPlane::update_transition(void) { if (plane.control_mode == &plane.mode_manual || plane.control_mode == &plane.mode_acro || plane.control_mode == &plane.mode_training) { // in manual modes quad motors are always off if (!tilt.motors_active && !is_tailsitter()) { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN); motors->output(); } transition_state = TRANSITION_DONE; transition_start_ms = 0; transition_low_airspeed_ms = 0; assisted_flight = false; return; } const uint32_t now = millis(); if (!hal.util->get_soft_armed()) { // reset the failure timer if we haven't started transitioning transition_start_ms = now; } else if ((transition_state != TRANSITION_DONE) && (transition_start_ms != 0) && (transition_failure > 0) && ((now - transition_start_ms) > ((uint32_t)transition_failure * 1000))) { gcs().send_text(MAV_SEVERITY_CRITICAL, "Transition failed, exceeded time limit"); plane.set_mode(plane.mode_qland, ModeReason::VTOL_FAILED_TRANSITION); } float aspeed; bool have_airspeed = ahrs.airspeed_estimate(&aspeed); // tailsitters use angle wait, not airspeed wait if (is_tailsitter() && transition_state == TRANSITION_AIRSPEED_WAIT) { transition_state = TRANSITION_ANGLE_WAIT_FW; } /* see if we should provide some assistance */ if (have_airspeed && assistance_needed(aspeed) && !is_tailsitter() && hal.util->get_soft_armed() && ((plane.auto_throttle_mode && !plane.throttle_suppressed) || plane.get_throttle_input()>0 || plane.is_flying())) { // the quad should provide some assistance to the plane if (transition_state != TRANSITION_AIRSPEED_WAIT) { gcs().send_text(MAV_SEVERITY_INFO, "Transition started airspeed %.1f", (double)aspeed); } transition_state = TRANSITION_AIRSPEED_WAIT; if (transition_start_ms == 0) { transition_start_ms = now; } assisted_flight = true; } else { assisted_flight = false; } if (is_tailsitter()) { if (transition_state == TRANSITION_ANGLE_WAIT_FW && tailsitter_transition_fw_complete()) { gcs().send_text(MAV_SEVERITY_INFO, "Transition FW done"); transition_state = TRANSITION_DONE; transition_start_ms = 0; transition_low_airspeed_ms = 0; } } // if rotors are fully forward then we are not transitioning, // unless we are waiting for airspeed to increase (in which case // the tilt will decrease rapidly) if (tiltrotor_fully_fwd() && transition_state != TRANSITION_AIRSPEED_WAIT) { transition_state = TRANSITION_DONE; transition_start_ms = 0; transition_low_airspeed_ms = 0; } if (transition_state < TRANSITION_TIMER) { // set a single loop pitch limit in TECS if (plane.ahrs.groundspeed() < 3) { // until we have some ground speed limit to zero pitch plane.TECS_controller.set_pitch_max_limit(0); } else { plane.TECS_controller.set_pitch_max_limit(transition_pitch_max); } } else if (transition_state < TRANSITION_DONE) { plane.TECS_controller.set_pitch_max_limit((transition_pitch_max+1)*2); } if (transition_state < TRANSITION_DONE) { // during transition we ask TECS to use a synthetic // airspeed. Otherwise the pitch limits will throw off the // throttle calculation which is driven by pitch plane.TECS_controller.use_synthetic_airspeed(); } switch (transition_state) { case TRANSITION_AIRSPEED_WAIT: { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // we hold in hover until the required airspeed is reached if (transition_start_ms == 0) { gcs().send_text(MAV_SEVERITY_INFO, "Transition airspeed wait"); transition_start_ms = now; } transition_low_airspeed_ms = now; if (have_airspeed && aspeed > plane.aparm.airspeed_min && !assisted_flight) { transition_state = TRANSITION_TIMER; gcs().send_text(MAV_SEVERITY_INFO, "Transition airspeed reached %.1f", (double)aspeed); } assisted_flight = true; // do not allow a climb on the quad motors during transition // a climb would add load to the airframe, and prolongs the // transition float climb_rate_cms = assist_climb_rate_cms(); if (options & OPTION_LEVEL_TRANSITION) { climb_rate_cms = MIN(climb_rate_cms, 0.0f); } hold_hover(climb_rate_cms); // set desired yaw to current yaw in both desired angle and // rate request. This reduces wing twist in transition due to // multicopter yaw demands attitude_control->set_yaw_target_to_current_heading(); attitude_control->rate_bf_yaw_target(ahrs.get_gyro().z); last_throttle = motors->get_throttle(); // reset integrators while we are below target airspeed as we // may build up too much while still primarily under // multicopter control plane.pitchController.reset_I(); plane.rollController.reset_I(); // give full authority to attitude control attitude_control->set_throttle_mix_max(1.0f); break; } case TRANSITION_TIMER: { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // after airspeed is reached we degrade throttle over the // transition time, but continue to stabilize const uint32_t transition_timer_ms = now - transition_low_airspeed_ms; if (transition_timer_ms > (unsigned)transition_time_ms) { transition_state = TRANSITION_DONE; transition_start_ms = 0; transition_low_airspeed_ms = 0; gcs().send_text(MAV_SEVERITY_INFO, "Transition done"); } float trans_time_ms = (float)transition_time_ms.get(); float transition_scale = (trans_time_ms - transition_timer_ms) / trans_time_ms; float throttle_scaled = last_throttle * transition_scale; // set zero throttle mix, to give full authority to // throttle. This ensures that the fixed wing controllers get // a chance to learn the right integrators during the transition attitude_control->set_throttle_mix_value(0.5*transition_scale); if (throttle_scaled < 0.01) { // ensure we don't drop all the way to zero or the motors // will stop stabilizing throttle_scaled = 0.01; } assisted_flight = true; hold_stabilize(throttle_scaled); // set desired yaw to current yaw in both desired angle and // rate request while waiting for transition to // complete. Navigation should be controlled by fixed wing // control surfaces at this stage attitude_control->set_yaw_target_to_current_heading(); attitude_control->rate_bf_yaw_target(ahrs.get_gyro().z); break; } case TRANSITION_ANGLE_WAIT_FW: { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); assisted_flight = true; // calculate transition rate in degrees per // millisecond. Assume we want to get to the transition angle // in half the transition time float transition_rate = tailsitter.transition_angle / float(transition_time_ms/2); uint32_t dt = now - transition_start_ms; plane.nav_pitch_cd = constrain_float((-transition_rate * dt)*100, -8500, 0); plane.nav_roll_cd = 0; check_attitude_relax(); attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(plane.nav_roll_cd, plane.nav_pitch_cd, 0); attitude_control->set_throttle_out(motors->get_throttle_hover(), true, 0); break; } case TRANSITION_ANGLE_WAIT_VTOL: // nothing to do, this is handled in the fw attitude controller return; case TRANSITION_DONE: if (!tilt.motors_active && !is_tailsitter()) { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN); motors->output(); } return; } motors_output(); } /* update motor output for quadplane */ void QuadPlane::update(void) { if (!setup()) { return; } if ((ahrs_view != NULL) && !is_equal(_last_ahrs_trim_pitch, ahrs_trim_pitch.get())) { _last_ahrs_trim_pitch = ahrs_trim_pitch.get(); ahrs_view->set_pitch_trim(_last_ahrs_trim_pitch); } #if ADVANCED_FAILSAFE == ENABLED if (plane.afs.should_crash_vehicle() && !plane.afs.terminating_vehicle_via_landing()) { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN); motors->output(); return; } #endif if (motor_test.running) { motor_test_output(); return; } if (SRV_Channels::get_emergency_stop()) { attitude_control->reset_rate_controller_I_terms(); } if (!hal.util->get_soft_armed()) { /* make sure we don't have any residual control from previous flight stages */ if (is_tailsitter()) { // tailsitters only relax I terms, to make ground testing easier attitude_control->reset_rate_controller_I_terms(); } else { // otherwise full relax attitude_control->relax_attitude_controllers(); } pos_control->relax_alt_hold_controllers(0); } if (!in_vtol_mode()) { update_transition(); } else { const uint32_t now = AP_HAL::millis(); assisted_flight = false; // output to motors motors_output(); if (now - last_vtol_mode_ms > 1000 && is_tailsitter()) { /* we are just entering a VTOL mode as a tailsitter, set our transition state so the fixed wing controller brings the nose up before we start trying to fly as a multicopter */ transition_state = TRANSITION_ANGLE_WAIT_VTOL; transition_start_ms = now; } else if (is_tailsitter() && transition_state == TRANSITION_ANGLE_WAIT_VTOL) { if (tailsitter_transition_vtol_complete()) { /* we have completed transition to VTOL as a tailsitter, setup for the back transition when needed */ gcs().send_text(MAV_SEVERITY_INFO, "Transition VTOL done"); transition_state = TRANSITION_ANGLE_WAIT_FW; transition_start_ms = now; } } else { /* setup the transition state appropriately for next time we go into a non-VTOL mode */ transition_start_ms = 0; transition_low_airspeed_ms = 0; if (throttle_wait && !plane.is_flying()) { transition_state = TRANSITION_DONE; } else if (is_tailsitter()) { /* setup for the transition back to fixed wing for later */ transition_state = TRANSITION_ANGLE_WAIT_FW; transition_start_ms = now; } else { /* setup for airspeed wait for later */ transition_state = TRANSITION_AIRSPEED_WAIT; } last_throttle = motors->get_throttle(); } last_vtol_mode_ms = now; } // disable throttle_wait when throttle rises above 10% if (throttle_wait && (plane.get_throttle_input() > 10 || plane.failsafe.rc_failsafe || plane.failsafe.throttle_counter>0)) { throttle_wait = false; } tiltrotor_update(); } /* see if motors should be shutdown. If they should be then change AP_Motors state to AP_Motors::DesiredSpoolState::SHUT_DOWN This is a safety check to prevent accidental motor runs on the ground, such as if RC fails and QRTL is started */ void QuadPlane::update_throttle_suppression(void) { // if the motors have been running in the last 2 seconds then // allow them to run now if (AP_HAL::millis() - last_motors_active_ms < 2000) { return; } // see if motors are already disabled if (motors->get_desired_spool_state() < AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED) { return; } // if the users throttle is above zero then allow motors to run if (plane.get_throttle_input() != 0) { return; } // if we are in a fixed wing auto throttle mode and we have // unsuppressed the throttle then allow motors to run if (plane.auto_throttle_mode && !plane.throttle_suppressed) { return; } // if our vertical velocity is greater than 1m/s then allow motors to run if (fabsf(inertial_nav.get_velocity_z()) > 100) { return; } // if we are more than 5m from home altitude then allow motors to run if (plane.relative_ground_altitude(plane.g.rangefinder_landing) > 5) { return; } // allow for takeoff if (plane.control_mode == &plane.mode_auto && is_vtol_takeoff(plane.mission.get_current_nav_cmd().id)) { return; } // motors should be in the spin when armed state to warn user they could become active motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); motors->set_throttle(0); last_motors_active_ms = 0; } // update estimated throttle required to hover (if necessary) // called at 100hz void QuadPlane::update_throttle_hover() { if (!available()) { return; } // if not armed or landed exit if (!motors->armed() || !is_flying_vtol()) { return; } // do not update while climbing or descending if (!is_zero(pos_control->get_desired_velocity().z)) { return; } // do not update if quadplane forward motor is running (wing may be generating lift) if (!is_tailsitter() && (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) != 0)) { return; } // don't update if Z controller not running const uint32_t now = AP_HAL::millis(); if (now - last_pidz_active_ms > 20) { return; } // get throttle output float throttle = motors->get_throttle(); float aspeed; // calc average throttle if we are in a level hover and low airspeed if (throttle > 0.0f && fabsf(inertial_nav.get_velocity_z()) < 60 && labs(ahrs_view->roll_sensor) < 500 && labs(ahrs_view->pitch_sensor) < 500 && ahrs.airspeed_estimate(&aspeed) && aspeed < plane.aparm.airspeed_min*0.3) { // Can we set the time constant automatically motors->update_throttle_hover(0.01f); } } /* output motors and do any copter needed */ void QuadPlane::motors_output(bool run_rate_controller) { if (run_rate_controller) { attitude_control->rate_controller_run(); } #if ADVANCED_FAILSAFE == ENABLED if (!hal.util->get_soft_armed() || (plane.afs.should_crash_vehicle() && !plane.afs.terminating_vehicle_via_landing()) || SRV_Channels::get_emergency_stop()) { #else if (!hal.util->get_soft_armed() || SRV_Channels::get_emergency_stop()) { #endif motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN); motors->output(); return; } if (esc_calibration && AP_Notify::flags.esc_calibration && plane.control_mode == &plane.mode_qstabilize) { // output is direct from run_esc_calibration() return; } if (in_tailsitter_vtol_transition()) { /* don't run the motor outputs while in tailsitter->vtol transition. That is taken care of by the fixed wing stabilisation code */ return; } // see if motors should be shut down update_throttle_suppression(); motors->output(); if (motors->armed() && motors->get_spool_state() != AP_Motors::SpoolState::SHUT_DOWN) { const uint32_t now = AP_HAL::millis(); // log RATE at main loop rate plane.logger.Write_Rate(ahrs_view, *motors, *attitude_control, *pos_control); // log QTUN at 25 Hz if (now - last_qtun_log_ms > 40) { last_qtun_log_ms = now; Log_Write_QControl_Tuning(); } // log CTRL at 10 Hz if (now - last_ctrl_log_ms > 100) { last_ctrl_log_ms = now; attitude_control->control_monitor_log(); } } // remember when motors were last active for throttle suppression if (motors->get_throttle() > 0.01f || tilt.motors_active) { last_motors_active_ms = AP_HAL::millis(); } } /* update control mode for quadplane modes */ void QuadPlane::control_run(void) { if (!initialised) { return; } switch (plane.control_mode->mode_number()) { case Mode::Number::QACRO: control_qacro(); break; case Mode::Number::QSTABILIZE: control_stabilize(); break; case Mode::Number::QHOVER: control_hover(); break; case Mode::Number::QLOITER: case Mode::Number::QLAND: control_loiter(); break; case Mode::Number::QRTL: control_qrtl(); break; #if QAUTOTUNE_ENABLED case Mode::Number::QAUTOTUNE: qautotune.run(); break; #endif default: break; } // we also stabilize using fixed wing surfaces float speed_scaler = plane.get_speed_scaler(); if (plane.control_mode->mode_number() == Mode::Number::QACRO) { plane.stabilize_acro(speed_scaler); } else { plane.stabilize_roll(speed_scaler); plane.stabilize_pitch(speed_scaler); } } /* enter a quadplane mode */ bool QuadPlane::init_mode(void) { if (!setup()) { return false; } if (!initialised) { gcs().send_text(MAV_SEVERITY_CRITICAL, "QuadPlane mode refused"); return false; } AP_Notify::flags.esc_calibration = false; switch (plane.control_mode->mode_number()) { case Mode::Number::QSTABILIZE: init_stabilize(); break; case Mode::Number::QHOVER: init_hover(); break; case Mode::Number::QLOITER: init_loiter(); break; case Mode::Number::QLAND: init_qland(); break; case Mode::Number::QRTL: init_qrtl(); break; case Mode::Number::GUIDED: guided_takeoff = false; break; #if QAUTOTUNE_ENABLED case Mode::Number::QAUTOTUNE: return qautotune.init(); #endif case Mode::Number::QACRO: init_qacro(); break; default: break; } return true; } /* handle a MAVLink DO_VTOL_TRANSITION */ bool QuadPlane::handle_do_vtol_transition(enum MAV_VTOL_STATE state) { if (!available()) { gcs().send_text(MAV_SEVERITY_NOTICE, "VTOL not available"); return false; } if (plane.control_mode != &plane.mode_auto) { gcs().send_text(MAV_SEVERITY_NOTICE, "VTOL transition only in AUTO"); return false; } switch (state) { case MAV_VTOL_STATE_MC: if (!plane.auto_state.vtol_mode) { gcs().send_text(MAV_SEVERITY_NOTICE, "Entered VTOL mode"); } plane.auto_state.vtol_mode = true; return true; case MAV_VTOL_STATE_FW: if (plane.auto_state.vtol_mode) { gcs().send_text(MAV_SEVERITY_NOTICE, "Exited VTOL mode"); } plane.auto_state.vtol_mode = false; return true; default: break; } gcs().send_text(MAV_SEVERITY_NOTICE, "Invalid VTOL mode"); return false; } /* are we in a VTOL auto state? */ bool QuadPlane::in_vtol_auto(void) const { if (!available()) { return false; } if (plane.control_mode != &plane.mode_auto) { return false; } if (plane.auto_state.vtol_mode) { return true; } uint16_t id = plane.mission.get_current_nav_cmd().id; switch (id) { case MAV_CMD_NAV_VTOL_TAKEOFF: return true; case MAV_CMD_NAV_LOITER_UNLIM: case MAV_CMD_NAV_LOITER_TIME: case MAV_CMD_NAV_LOITER_TURNS: case MAV_CMD_NAV_LOITER_TO_ALT: return plane.auto_state.vtol_loiter; case MAV_CMD_NAV_TAKEOFF: return is_vtol_takeoff(id); case MAV_CMD_NAV_VTOL_LAND: case MAV_CMD_NAV_LAND: return is_vtol_land(id); default: return false; } } /* are we in a VTOL mode? */ bool QuadPlane::in_vtol_mode(void) const { if (!available()) { return false; } return (plane.control_mode == &plane.mode_qstabilize || plane.control_mode == &plane.mode_qhover || plane.control_mode == &plane.mode_qloiter || plane.control_mode == &plane.mode_qland || plane.control_mode == &plane.mode_qrtl || plane.control_mode == &plane.mode_qacro || plane.control_mode == &plane.mode_qautotune || ((plane.control_mode == &plane.mode_guided || plane.control_mode == &plane.mode_avoidADSB) && plane.auto_state.vtol_loiter) || in_vtol_auto()); } /* main landing controller. Used for landing and RTL. */ void QuadPlane::vtol_position_controller(void) { if (!setup()) { return; } setup_target_position(); const Location &loc = plane.next_WP_loc; check_attitude_relax(); // horizontal position control switch (poscontrol.state) { case QPOS_POSITION1: { const Vector2f diff_wp = plane.current_loc.get_distance_NE(loc); const float distance = diff_wp.length(); Vector2f groundspeed = ahrs.groundspeed_vector(); float speed_towards_target = distance>1?(diff_wp.normalized() * groundspeed):0; if (poscontrol.speed_scale <= 0) { // initialise scaling so we start off targeting our // current linear speed towards the target. If this is // less than the wpnav speed then the wpnav speed is used // land_speed_scale is then used to linearly change // velocity as we approach the waypoint, aiming for zero // speed at the waypoint // setup land_speed_scale so at current distance we // maintain speed towards target, and slow down as we // approach // max_speed will control how fast we will fly. It will always decrease poscontrol.max_speed = MAX(speed_towards_target, wp_nav->get_default_speed_xy() * 0.01); poscontrol.speed_scale = poscontrol.max_speed / MAX(distance, 1); } // run fixed wing navigation plane.nav_controller->update_waypoint(plane.prev_WP_loc, loc); /* calculate target velocity, not dropping it below 2m/s */ const float final_speed = 2.0f; Vector2f target_speed_xy = diff_wp * poscontrol.speed_scale; float target_speed = target_speed_xy.length(); if (distance < 1) { // prevent numerical error before switching to POSITION2 target_speed_xy(0.1, 0.1); } if (target_speed < final_speed) { // until we enter the loiter we always aim for at least 2m/s target_speed_xy = target_speed_xy.normalized() * final_speed; poscontrol.max_speed = final_speed; } else if (target_speed > poscontrol.max_speed) { // we never speed up during landing approaches target_speed_xy = target_speed_xy.normalized() * poscontrol.max_speed; } else { poscontrol.max_speed = target_speed; } pos_control->set_desired_velocity_xy(target_speed_xy.x*100, target_speed_xy.y*100); // reset position controller xy target to current position // because we only want velocity control (no position control) const Vector3f& curr_pos = inertial_nav.get_position(); pos_control->set_xy_target(curr_pos.x, curr_pos.y); pos_control->set_desired_accel_xy(0.0f,0.0f); // run horizontal velocity controller pos_control->update_vel_controller_xy(); // nav roll and pitch are controller by position controller plane.nav_roll_cd = pos_control->get_roll(); plane.nav_pitch_cd = pos_control->get_pitch(); /* limit the pitch down with an expanding envelope. This prevents the velocity controller demanding nose down during the initial slowdown if the target velocity curve is higher than the actual velocity curve (for a high drag aircraft). Nose down will cause a lot of downforce on the wings which will draw a lot of current and also cause the aircraft to lose altitude rapidly.pitch limit varies also with speed to prevent inability to progress to position if moving from a loiter to landing */ float minlimit = linear_interpolate(-aparm.angle_max, -300, speed_towards_target, wp_nav->get_default_speed_xy() * 0.01, wp_nav->get_default_speed_xy() * 0.015); float pitch_limit_cd = linear_interpolate(minlimit, plane.aparm.pitch_limit_min_cd, plane.auto_state.wp_proportion, 0, 1); if (plane.nav_pitch_cd < pitch_limit_cd) { plane.nav_pitch_cd = pitch_limit_cd; // tell the pos controller we have limited the pitch to // stop integrator buildup pos_control->set_limit_accel_xy(); } // call attitude controller attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(plane.nav_roll_cd, plane.nav_pitch_cd, desired_auto_yaw_rate_cds() + get_weathervane_yaw_rate_cds()); if (plane.auto_state.wp_proportion >= 1 || plane.auto_state.wp_distance < 5) { poscontrol.state = QPOS_POSITION2; loiter_nav->clear_pilot_desired_acceleration(); loiter_nav->init_target(); gcs().send_text(MAV_SEVERITY_INFO,"VTOL position2 started v=%.1f d=%.1f", (double)ahrs.groundspeed(), (double)plane.auto_state.wp_distance); } break; } case QPOS_POSITION2: case QPOS_LAND_DESCEND: /* for final land repositioning and descent we run the position controller */ // also run fixed wing navigation plane.nav_controller->update_waypoint(plane.prev_WP_loc, loc); FALLTHROUGH; case QPOS_LAND_FINAL: // set position controller desired velocity and acceleration to zero pos_control->set_desired_velocity_xy(0.0f,0.0f); pos_control->set_desired_accel_xy(0.0f,0.0f); // set position control target and update if (should_relax()) { loiter_nav->soften_for_landing(); } else { pos_control->set_xy_target(poscontrol.target.x, poscontrol.target.y); } pos_control->update_xy_controller(); // nav roll and pitch are controller by position controller plane.nav_roll_cd = pos_control->get_roll(); plane.nav_pitch_cd = pos_control->get_pitch(); // call attitude controller attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(plane.nav_roll_cd, plane.nav_pitch_cd, get_pilot_input_yaw_rate_cds() + get_weathervane_yaw_rate_cds()); break; case QPOS_LAND_COMPLETE: // nothing to do break; } // now height control switch (poscontrol.state) { case QPOS_POSITION1: case QPOS_POSITION2: { bool vtol_loiter_auto = false; if (plane.control_mode == &plane.mode_auto) { switch (plane.mission.get_current_nav_cmd().id) { case MAV_CMD_NAV_LOITER_UNLIM: case MAV_CMD_NAV_LOITER_TIME: case MAV_CMD_NAV_LOITER_TURNS: case MAV_CMD_NAV_LOITER_TO_ALT: vtol_loiter_auto = true; break; } } if (plane.control_mode == &plane.mode_qrtl || plane.control_mode == &plane.mode_guided || vtol_loiter_auto) { plane.ahrs.get_position(plane.current_loc); float target_altitude = plane.next_WP_loc.alt; if (poscontrol.slow_descent) { // gradually descend as we approach target plane.auto_state.wp_proportion = plane.current_loc.line_path_proportion(plane.prev_WP_loc, plane.next_WP_loc); target_altitude = linear_interpolate(plane.prev_WP_loc.alt, plane.next_WP_loc.alt, plane.auto_state.wp_proportion, 0, 1); } adjust_alt_target(target_altitude - plane.home.alt); } else { pos_control->set_alt_target_from_climb_rate(0, plane.G_Dt, false); } break; } case QPOS_LAND_DESCEND: { float height_above_ground = plane.relative_ground_altitude(plane.g.rangefinder_landing); pos_control->set_alt_target_from_climb_rate(-landing_descent_rate_cms(height_above_ground), plane.G_Dt, true); break; } case QPOS_LAND_FINAL: pos_control->set_alt_target_from_climb_rate(-land_speed_cms, plane.G_Dt, true); break; case QPOS_LAND_COMPLETE: break; } run_z_controller(); } /* setup the target position based on plane.next_WP_loc */ void QuadPlane::setup_target_position(void) { const Location &loc = plane.next_WP_loc; Location origin; if (!ahrs.get_origin(origin)) { origin.zero(); } motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); const Vector2f diff2d = origin.get_distance_NE(loc); poscontrol.target.x = diff2d.x * 100; poscontrol.target.y = diff2d.y * 100; poscontrol.target.z = plane.next_WP_loc.alt - origin.alt; const uint32_t now = AP_HAL::millis(); if (!loc.same_latlon_as(last_auto_target) || plane.next_WP_loc.alt != last_auto_target.alt || now - last_loiter_ms > 500) { wp_nav->set_wp_destination(poscontrol.target); last_auto_target = loc; } last_loiter_ms = now; // setup vertical speed and acceleration pos_control->set_max_speed_z(-pilot_velocity_z_max, pilot_velocity_z_max); pos_control->set_max_accel_z(pilot_accel_z); } /* run takeoff controller to climb vertically */ void QuadPlane::takeoff_controller(void) { /* for takeoff we use the position controller */ check_attitude_relax(); setup_target_position(); // set position controller desired velocity and acceleration to zero pos_control->set_desired_velocity_xy(0.0f,0.0f); pos_control->set_desired_accel_xy(0.0f,0.0f); // set position control target and update pos_control->set_xy_target(poscontrol.target.x, poscontrol.target.y); pos_control->update_xy_controller(); // nav roll and pitch are controller by position controller plane.nav_roll_cd = pos_control->get_roll(); plane.nav_pitch_cd = pos_control->get_pitch(); attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(plane.nav_roll_cd, plane.nav_pitch_cd, get_pilot_input_yaw_rate_cds() + get_weathervane_yaw_rate_cds()); pos_control->set_alt_target_from_climb_rate(wp_nav->get_default_speed_up(), plane.G_Dt, true); run_z_controller(); } /* run waypoint controller between prev_WP_loc and next_WP_loc */ void QuadPlane::waypoint_controller(void) { setup_target_position(); check_attitude_relax(); /* this is full copter control of auto flight */ // run wpnav controller wp_nav->update_wpnav(); // call attitude controller attitude_control->input_euler_angle_roll_pitch_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), wp_nav->get_yaw(), true); // nav roll and pitch are controller by loiter controller plane.nav_roll_cd = wp_nav->get_roll(); plane.nav_pitch_cd = wp_nav->get_pitch(); // climb based on altitude error pos_control->set_alt_target_from_climb_rate_ff(assist_climb_rate_cms(), plane.G_Dt, false); run_z_controller(); } /* handle auto-mode when auto_state.vtol_mode is true */ void QuadPlane::control_auto(void) { if (!setup()) { return; } motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); uint16_t id = plane.mission.get_current_nav_cmd().id; switch (id) { case MAV_CMD_NAV_VTOL_TAKEOFF: case MAV_CMD_NAV_TAKEOFF: if (is_vtol_takeoff(id)) { takeoff_controller(); } break; case MAV_CMD_NAV_VTOL_LAND: case MAV_CMD_NAV_LAND: if (is_vtol_land(id)) { vtol_position_controller(); } break; case MAV_CMD_NAV_LOITER_UNLIM: case MAV_CMD_NAV_LOITER_TIME: case MAV_CMD_NAV_LOITER_TURNS: case MAV_CMD_NAV_LOITER_TO_ALT: vtol_position_controller(); break; default: waypoint_controller(); break; } } /* handle QRTL mode */ void QuadPlane::control_qrtl(void) { vtol_position_controller(); if (poscontrol.state >= QPOS_POSITION2) { // change target altitude to home alt plane.next_WP_loc.alt = plane.home.alt; verify_vtol_land(); } } /* handle QRTL mode */ void QuadPlane::init_qrtl(void) { // use do_RTL() to setup next_WP_loc plane.do_RTL(plane.home.alt + qrtl_alt*100UL); plane.prev_WP_loc = plane.current_loc; poscontrol.slow_descent = (plane.current_loc.alt > plane.next_WP_loc.alt); poscontrol.state = QPOS_POSITION1; poscontrol.speed_scale = 0; pos_control->set_desired_accel_xy(0.0f, 0.0f); pos_control->init_xy_controller(); } /* start a VTOL takeoff */ bool QuadPlane::do_vtol_takeoff(const AP_Mission::Mission_Command& cmd) { if (!setup()) { return false; } // we always use the current location in XY for takeoff. The altitude defaults // to relative to current height, but if Q_OPTIONS is set to respect takeoff frame // then it will use normal frame handling for height Location loc = cmd.content.location; loc.lat = 0; loc.lng = 0; plane.set_next_WP(loc); if (options & OPTION_RESPECT_TAKEOFF_FRAME) { if (plane.current_loc.alt >= plane.next_WP_loc.alt) { // we are above the takeoff already, no need to do anything return false; } } else { plane.next_WP_loc.alt = plane.current_loc.alt + cmd.content.location.alt; } throttle_wait = false; // set target to current position loiter_nav->clear_pilot_desired_acceleration(); loiter_nav->init_target(); // initialize vertical speed and acceleration pos_control->set_max_speed_z(-pilot_velocity_z_max, pilot_velocity_z_max); pos_control->set_max_accel_z(pilot_accel_z); // initialise position and desired velocity set_alt_target_current(); pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z()); // also update nav_controller for status output plane.nav_controller->update_waypoint(plane.prev_WP_loc, plane.next_WP_loc); // calculate the time required to complete a takeoff // this may be conservative and accept extra time due to clamping // derived from the following latex equations if you want a nicely formatted view // t_{accel} = \frac{V_max - V_z}{a} // d_{accel} = V_z*t_{accel} + \frac{1}{2}*a*t_{accel}^2 // d_{remaining} = d_{total} - d_{accel} // t_{constant} = \frac{d_{remaining}}{V_z} // t = max(t_{accel}, 0) + max(t_{constant}, 0) const float d_total = (plane.next_WP_loc.alt - plane.current_loc.alt) * 0.01f; const float accel_m_s_s = MAX(10, pilot_accel_z) * 0.01f; const float vel_max = MAX(10, pilot_velocity_z_max) * 0.01f; const float vel_z = inertial_nav.get_velocity_z() * 0.01f; const float t_accel = (vel_max - vel_z) / accel_m_s_s; const float d_accel = vel_z * t_accel + 0.5f * accel_m_s_s * sq(t_accel); const float d_remaining = d_total - d_accel; const float t_constant = d_remaining / vel_max; const float travel_time = MAX(t_accel, 0) + MAX(t_constant, 0); // setup the takeoff failure handling code takeoff_start_time_ms = millis(); takeoff_time_limit_ms = MAX(travel_time * takeoff_failure_scalar * 1000, 5000); // minimum time 5 seconds return true; } /* start a VTOL landing */ bool QuadPlane::do_vtol_land(const AP_Mission::Mission_Command& cmd) { if (!setup()) { return false; } attitude_control->reset_rate_controller_I_terms(); pos_control->get_accel_z_pid().reset_I(); pos_control->get_vel_xy_pid().reset_I(); plane.set_next_WP(cmd.content.location); // initially aim for current altitude plane.next_WP_loc.alt = plane.current_loc.alt; poscontrol.state = QPOS_POSITION1; poscontrol.speed_scale = 0; pos_control->set_desired_accel_xy(0.0f, 0.0f); pos_control->init_xy_controller(); throttle_wait = false; landing_detect.lower_limit_start_ms = 0; landing_detect.land_start_ms = 0; set_alt_target_current(); plane.crash_state.is_crashed = false; // also update nav_controller for status output plane.nav_controller->update_waypoint(plane.prev_WP_loc, plane.next_WP_loc); return true; } /* check if a VTOL takeoff has completed */ bool QuadPlane::verify_vtol_takeoff(const AP_Mission::Mission_Command &cmd) { if (!available()) { return true; } const uint32_t now = millis(); // reset takeoff start time if we aren't armed, as we won't have made any progress if (!hal.util->get_soft_armed()) { takeoff_start_time_ms = now; } // check for failure conditions if (is_positive(takeoff_failure_scalar) && ((now - takeoff_start_time_ms) > takeoff_time_limit_ms)) { gcs().send_text(MAV_SEVERITY_CRITICAL, "Failed to complete takeoff within time limit"); plane.set_mode(plane.mode_qland, ModeReason::VTOL_FAILED_TAKEOFF); return false; } if (is_positive(maximum_takeoff_airspeed) && (plane.airspeed.get_airspeed() > maximum_takeoff_airspeed)) { gcs().send_text(MAV_SEVERITY_CRITICAL, "Failed to complete takeoff, excessive wind"); plane.set_mode(plane.mode_qland, ModeReason::VTOL_FAILED_TAKEOFF); return false; } if (plane.current_loc.alt < plane.next_WP_loc.alt) { return false; } transition_state = is_tailsitter() ? TRANSITION_ANGLE_WAIT_FW : TRANSITION_AIRSPEED_WAIT; plane.TECS_controller.set_pitch_max_limit(transition_pitch_max); set_alt_target_current(); plane.complete_auto_takeoff(); return true; } /* a landing detector based on change in altitude over a timeout */ bool QuadPlane::land_detector(uint32_t timeout_ms) { const uint32_t now = AP_HAL::millis(); bool might_be_landed = (landing_detect.lower_limit_start_ms != 0 && now - landing_detect.lower_limit_start_ms > 1000); if (!might_be_landed) { landing_detect.land_start_ms = 0; return false; } float height = inertial_nav.get_altitude()*0.01f; if (landing_detect.land_start_ms == 0) { landing_detect.land_start_ms = now; landing_detect.vpos_start_m = height; } // we only consider the vehicle landed when the motors have been // at minimum for timeout_ms+1000 and the vertical position estimate has not // changed by more than 20cm for timeout_ms if (fabsf(height - landing_detect.vpos_start_m) > 0.2) { // height has changed, call off landing detection landing_detect.land_start_ms = 0; return false; } if ((now - landing_detect.land_start_ms) < timeout_ms || (now - landing_detect.lower_limit_start_ms) < (timeout_ms+1000)) { // not landed yet return false; } return true; } /* check if a landing is complete */ void QuadPlane::check_land_complete(void) { if (poscontrol.state != QPOS_LAND_FINAL) { // only apply to final landing phase return; } if (land_detector(4000)) { plane.arming.disarm(); poscontrol.state = QPOS_LAND_COMPLETE; gcs().send_text(MAV_SEVERITY_INFO,"Land complete"); // reload target airspeed which could have been modified by the mission plane.aparm.airspeed_cruise_cm.load(); } } /* check if we should switch from QPOS_LAND_DESCEND to QPOS_LAND_FINAL */ bool QuadPlane::check_land_final(void) { float height_above_ground = plane.relative_ground_altitude(plane.g.rangefinder_landing); if (height_above_ground < land_final_alt) { return true; } /* also apply landing detector, in case we have landed in descent phase. Use a longer threshold */ return land_detector(6000); } /* check if a VTOL landing has completed */ bool QuadPlane::verify_vtol_land(void) { if (!available()) { return true; } if (poscontrol.state == QPOS_POSITION2 && plane.auto_state.wp_distance < 2) { poscontrol.state = QPOS_LAND_DESCEND; #if LANDING_GEAR_ENABLED == ENABLED plane.g2.landing_gear.deploy_for_landing(); #endif gcs().send_text(MAV_SEVERITY_INFO,"Land descend started"); if (plane.control_mode == &plane.mode_auto) { // set height to mission height, so we can use the mission // WP height for triggering land final if no rangefinder // available plane.set_next_WP(plane.mission.get_current_nav_cmd().content.location); } else { plane.set_next_WP(plane.next_WP_loc); plane.next_WP_loc.alt = ahrs.get_home().alt; } } // at land_final_alt begin final landing if (poscontrol.state == QPOS_LAND_DESCEND && check_land_final()) { poscontrol.state = QPOS_LAND_FINAL; // cut IC engine if enabled if (land_icengine_cut != 0) { plane.g2.ice_control.engine_control(0, 0, 0); } gcs().send_text(MAV_SEVERITY_INFO,"Land final started"); } check_land_complete(); return false; } // Write a control tuning packet void QuadPlane::Log_Write_QControl_Tuning() { float des_alt_m = 0.0f; int16_t target_climb_rate_cms = 0; if (plane.control_mode != &plane.mode_qstabilize) { des_alt_m = pos_control->get_alt_target() / 100.0f; target_climb_rate_cms = pos_control->get_vel_target_z(); } struct log_QControl_Tuning pkt = { LOG_PACKET_HEADER_INIT(LOG_QTUN_MSG), time_us : AP_HAL::micros64(), throttle_in : attitude_control->get_throttle_in(), angle_boost : attitude_control->angle_boost(), throttle_out : motors->get_throttle(), throttle_hover : motors->get_throttle_hover(), desired_alt : des_alt_m, inav_alt : inertial_nav.get_altitude() / 100.0f, baro_alt : int32_t(plane.barometer.get_altitude() * 100), target_climb_rate : target_climb_rate_cms, climb_rate : int16_t(inertial_nav.get_velocity_z()), throttle_mix : attitude_control->get_throttle_mix(), }; plane.logger.WriteBlock(&pkt, sizeof(pkt)); // write multicopter position control message pos_control->write_log(); } /* calculate the forward throttle percentage. The forward throttle can be used to assist with position hold and with landing approach. It reduces the need for down pitch which reduces load on the vertical lift motors. */ int8_t QuadPlane::forward_throttle_pct(void) { /* in non-VTOL modes or modes without a velocity controller. We don't use it in QHOVER or QSTABILIZE as they are the primary recovery modes for a quadplane and need to be as simple as possible. They will drift with the wind */ if (!in_vtol_mode() || !motors->armed() || vel_forward.gain <= 0 || plane.control_mode == &plane.mode_qstabilize || plane.control_mode == &plane.mode_qhover || plane.control_mode == &plane.mode_qautotune || motors->get_desired_spool_state() < AP_Motors::DesiredSpoolState::GROUND_IDLE) { return 0; } float deltat = (AP_HAL::millis() - vel_forward.last_ms) * 0.001f; if (deltat > 1 || deltat < 0) { vel_forward.integrator = 0; deltat = 0.1; } if (deltat < 0.1) { // run at 10Hz return vel_forward.last_pct; } vel_forward.last_ms = AP_HAL::millis(); // work out the desired speed in forward direction const Vector3f &desired_velocity_cms = pos_control->get_desired_velocity(); Vector3f vel_ned; if (!plane.ahrs.get_velocity_NED(vel_ned)) { // we don't know our velocity? EKF must be pretty sick vel_forward.last_pct = 0; vel_forward.integrator = 0; return 0; } Vector3f vel_error_body = ahrs.get_rotation_body_to_ned().transposed() * ((desired_velocity_cms*0.01f) - vel_ned); // find component of velocity error in fwd body frame direction float fwd_vel_error = vel_error_body * Vector3f(1,0,0); // scale forward velocity error by maximum airspeed fwd_vel_error /= MAX(plane.aparm.airspeed_max, 5); // add in a component from our current pitch demand. This tends to // move us to zero pitch. Assume that LIM_PITCH would give us the // WP nav speed. fwd_vel_error -= (wp_nav->get_default_speed_xy() * 0.01f) * plane.nav_pitch_cd / (float)plane.aparm.pitch_limit_max_cd; if (should_relax() && vel_ned.length() < 1) { // we may be landed fwd_vel_error = 0; vel_forward.integrator *= 0.95f; } // integrator as throttle percentage (-100 to 100) vel_forward.integrator += fwd_vel_error * deltat * vel_forward.gain * 100; // inhibit reverse throttle and allow petrol engines with min > 0 int8_t fwd_throttle_min = plane.have_reverse_thrust() ? 0 : plane.aparm.throttle_min; vel_forward.integrator = constrain_float(vel_forward.integrator, fwd_throttle_min, plane.aparm.throttle_max); if (in_vtol_land_approach()) { // when we are doing horizontal positioning in a VTOL land // we always allow the fwd motor to run. Otherwise a bad // lidar could cause the aircraft not to be able to // approach the landing point when landing below the takeoff point vel_forward.last_pct = vel_forward.integrator; } else if (in_vtol_land_final() && motors->limit.throttle_lower) { // we're in the settling phase of landing, disable fwd motor vel_forward.last_pct = 0; vel_forward.integrator = 0; } else { // If we are below alt_cutoff then scale down the effect until // it turns off at alt_cutoff and decay the integrator float alt_cutoff = MAX(0,vel_forward_alt_cutoff); float height_above_ground = plane.relative_ground_altitude(plane.g.rangefinder_landing); vel_forward.last_pct = linear_interpolate(0, vel_forward.integrator, height_above_ground, alt_cutoff, alt_cutoff+2); } if (vel_forward.last_pct == 0) { // if the percent is 0 then decay the integrator vel_forward.integrator *= 0.95f; } return vel_forward.last_pct; } /* get weathervaning yaw rate in cd/s */ float QuadPlane::get_weathervane_yaw_rate_cds(void) { /* we only do weathervaning in modes where we are doing VTOL position control. We also don't do it if the pilot has given any yaw input in the last 3 seconds. */ if (!in_vtol_mode() || !motors->armed() || weathervane.gain <= 0 || plane.control_mode == &plane.mode_qstabilize || plane.control_mode == &plane.mode_qhover || plane.control_mode == &plane.mode_qautotune) { weathervane.last_output = 0; return 0; } const uint32_t tnow = millis(); if (plane.channel_rudder->get_control_in() != 0) { weathervane.last_pilot_input_ms = tnow; weathervane.last_output = 0; return 0; } if (tnow - weathervane.last_pilot_input_ms < 3000) { weathervane.last_output = 0; return 0; } float roll = wp_nav->get_roll() / 100.0f; if (fabsf(roll) < weathervane.min_roll) { weathervane.last_output = 0; return 0; } if (roll > 0) { roll -= weathervane.min_roll; } else { roll += weathervane.min_roll; } float output = constrain_float((roll/45.0f) * weathervane.gain, -1, 1); if (should_relax()) { output = 0; } weathervane.last_output = 0.98f * weathervane.last_output + 0.02f * output; // scale over half of yaw_rate_max. This gives the pilot twice the // authority of the weathervane controller return weathervane.last_output * (yaw_rate_max/2) * 100; } /* start guided mode control */ void QuadPlane::guided_start(void) { poscontrol.state = QPOS_POSITION1; poscontrol.speed_scale = 0; guided_takeoff = false; setup_target_position(); poscontrol.slow_descent = (plane.current_loc.alt > plane.next_WP_loc.alt); } /* update guided mode control */ void QuadPlane::guided_update(void) { if (plane.control_mode == &plane.mode_guided && guided_takeoff && plane.current_loc.alt < plane.next_WP_loc.alt) { throttle_wait = false; motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); takeoff_controller(); } else { guided_takeoff = false; // run VTOL position controller vtol_position_controller(); } } void QuadPlane::afs_terminate(void) { if (available()) { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN); motors->output(); } } /* return true if we should do guided mode loitering using VTOL motors */ bool QuadPlane::guided_mode_enabled(void) { if (!available()) { return false; } // only use quadplane guided when in AUTO or GUIDED mode if (plane.control_mode != &plane.mode_guided && plane.control_mode != &plane.mode_auto) { return false; } return guided_mode != 0; } /* set altitude target to current altitude */ void QuadPlane::set_alt_target_current(void) { pos_control->set_alt_target(inertial_nav.get_altitude()); } /* adjust the altitude target to the given target, moving it slowly */ void QuadPlane::adjust_alt_target(float altitude_cm) { float current_alt = inertial_nav.get_altitude(); // don't let it get beyond 50cm from current altitude float target_cm = constrain_float(altitude_cm, current_alt-50, current_alt+50); pos_control->set_alt_target(target_cm); } // user initiated takeoff for guided mode bool QuadPlane::do_user_takeoff(float takeoff_altitude) { if (plane.control_mode != &plane.mode_guided) { gcs().send_text(MAV_SEVERITY_INFO, "User Takeoff only in GUIDED mode"); return false; } if (!hal.util->get_soft_armed()) { gcs().send_text(MAV_SEVERITY_INFO, "Must be armed for takeoff"); return false; } if (is_flying()) { gcs().send_text(MAV_SEVERITY_INFO, "Already flying - no takeoff"); return false; } plane.auto_state.vtol_loiter = true; plane.prev_WP_loc = plane.current_loc; plane.next_WP_loc = plane.current_loc; plane.next_WP_loc.alt += takeoff_altitude*100; motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); guided_start(); guided_takeoff = true; return true; } // return true if the wp_nav controller is being updated bool QuadPlane::using_wp_nav(void) const { return plane.control_mode == &plane.mode_qloiter || plane.control_mode == &plane.mode_qland || plane.control_mode == &plane.mode_qrtl; } /* return mav_type for heartbeat */ MAV_TYPE QuadPlane::get_mav_type(void) const { if (mav_type.get() == 0) { return MAV_TYPE_FIXED_WING; } return MAV_TYPE(mav_type.get()); } /* return true if current mission item is a vtol takeoff */ bool QuadPlane::is_vtol_takeoff(uint16_t id) const { if (id == MAV_CMD_NAV_VTOL_TAKEOFF) { return true; } if (id == MAV_CMD_NAV_TAKEOFF && available() && (options & OPTION_ALLOW_FW_TAKEOFF) == 0) { // treat fixed wing takeoff as VTOL takeoff return true; } return false; } /* return true if current mission item is a vtol land */ bool QuadPlane::is_vtol_land(uint16_t id) const { if (id == MAV_CMD_NAV_VTOL_LAND) { if (options & QuadPlane::OPTION_MISSION_LAND_FW_APPROACH) { return plane.vtol_approach_s.approach_stage == Plane::Landing_ApproachStage::VTOL_LANDING; } else { return true; } } if (id == MAV_CMD_NAV_LAND && available() && (options & OPTION_ALLOW_FW_LAND) == 0) { // treat fixed wing land as VTOL land return true; } return false; } /* return true if we are in a transition to fwd flight from hover */ bool QuadPlane::in_transition(void) const { return available() && assisted_flight && (transition_state == TRANSITION_AIRSPEED_WAIT || transition_state == TRANSITION_TIMER); } /* calculate current stopping distance for a quadplane in fixed wing flight */ float QuadPlane::stopping_distance(void) { // use v^2/(2*accel). This is only quite approximate as the drag // varies with pitch, but it gives something for the user to // control the transition distance in a reasonable way return plane.ahrs.groundspeed_vector().length_squared() / (2 * transition_decel); } #define LAND_CHECK_ANGLE_ERROR_DEG 30.0f // maximum angle error to be considered landing #define LAND_CHECK_LARGE_ANGLE_CD 1500.0f // maximum angle target to be considered landing #define LAND_CHECK_ACCEL_MOVING 3.0f // maximum acceleration after subtracting gravity void QuadPlane::update_throttle_mix(void) { // transition will directly manage the mix if (in_transition()) { return; } // if disarmed or landed prioritise throttle if (!motors->armed()) { attitude_control->set_throttle_mix_min(); return; } if (plane.control_mode == &plane.mode_qstabilize) { // manual throttle if (plane.get_throttle_input() <= 0) { attitude_control->set_throttle_mix_min(); } else { attitude_control->set_throttle_mix_man(); } } else { // autopilot controlled throttle // check for aggressive flight requests - requested roll or pitch angle below 15 degrees const Vector3f angle_target = attitude_control->get_att_target_euler_cd(); bool large_angle_request = (norm(angle_target.x, angle_target.y) > LAND_CHECK_LARGE_ANGLE_CD); // check for large external disturbance - angle error over 30 degrees const float angle_error = attitude_control->get_att_error_angle_deg(); bool large_angle_error = (angle_error > LAND_CHECK_ANGLE_ERROR_DEG); // check for large acceleration - falling or high turbulence Vector3f accel_ef = plane.ahrs.get_accel_ef_blended(); accel_ef.z += GRAVITY_MSS; bool accel_moving = (accel_ef.length() > LAND_CHECK_ACCEL_MOVING); // check for requested decent bool descent_not_demanded = pos_control->get_desired_velocity().z >= 0.0f; if (large_angle_request || large_angle_error || accel_moving || descent_not_demanded) { attitude_control->set_throttle_mix_max(1.0); } else { attitude_control->set_throttle_mix_min(); } } } /* see if we are in the approach phase of a VTOL landing */ bool QuadPlane::in_vtol_land_approach(void) const { if (in_vtol_auto() && is_vtol_land(plane.mission.get_current_nav_cmd().id) && (poscontrol.state == QPOS_POSITION1 || poscontrol.state == QPOS_POSITION2)) { return true; } return false; } /* see if we are in the descent phase of a VTOL landing */ bool QuadPlane::in_vtol_land_descent(void) const { if (in_vtol_auto() && is_vtol_land(plane.mission.get_current_nav_cmd().id) && (poscontrol.state == QPOS_LAND_DESCEND || poscontrol.state == QPOS_LAND_FINAL)) { return true; } return false; } /* see if we are in the final phase of a VTOL landing */ bool QuadPlane::in_vtol_land_final(void) const { return in_vtol_land_descent() && poscontrol.state == QPOS_LAND_FINAL; } /* see if we are in any of the phases of a VTOL landing */ bool QuadPlane::in_vtol_land_sequence(void) const { return in_vtol_land_approach() || in_vtol_land_descent() || in_vtol_land_final(); }