// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- #include #include #include #include const AP_Param::GroupInfo AP_Mount::var_info[] PROGMEM = { // @Param: MODE // @DisplayName: Mount operation mode // @Description: Camera or antenna mount operation mode // @Values: 0:retract,1:neutral,2:MavLink_targeting,3:RC_targeting,4:GPS_point // @User: Standard AP_GROUPINFO("MODE", 0, AP_Mount, _mount_mode, MAV_MOUNT_MODE_RETRACT), // see MAV_MOUNT_MODE at ardupilotmega.h // @Param: RETRACT // @DisplayName: Mount retract angles // @Description: Mount angles when in retract operation mode // @Units: centi-Degrees // @Range: -18000 17999 // @Increment: 1 // @User: Standard AP_GROUPINFO("RETRACT", 1, AP_Mount, _retract_angles, 0), // @Param: NEUTRAL // @DisplayName: Mount neutral angles // @Description: Mount angles when in neutral operation mode // @Units: centi-Degrees // @Range: -18000 17999 // @Increment: 1 // @User: Standard AP_GROUPINFO("NEUTRAL", 2, AP_Mount, _neutral_angles, 0), // @Param: CONTROL // @DisplayName: Mount control angles // @Description: Mount angles when in MavLink or RC control operation mode // @Units: centi-Degrees // @Range: -18000 17999 // @Increment: 1 // @User: Standard AP_GROUPINFO("CONTROL", 3, AP_Mount, _control_angles, 0), // @Param: STAB_ROLL // @DisplayName: Stabilize mount roll // @Description:enable roll stabilisation relative to Earth // @Values: 0:Disabled,1:Enabled // @User: Standard AP_GROUPINFO("STAB_ROLL", 4, AP_Mount, _stab_roll, 0), // @Param: STAB_TILT // @DisplayName: Stabilize mount tilt // @Description: enable tilt (pitch) stabilisation relative to Earth // @Values: 0:Disabled,1:Enabled // @User: Standard AP_GROUPINFO("STAB_TILT", 5, AP_Mount, _stab_tilt, 0), // @Param: STAB_PAN // @DisplayName: Stabilize mount pan // @Description: enable pan (yaw) stabilisation relative to Earth // @Values: 0:Disabled,1:Enabled // @User: Standard AP_GROUPINFO("STAB_PAN", 6, AP_Mount, _stab_pan, 0), // @Param: ROLL_RC_IN // @DisplayName: roll RC input channel // @Description: 0 for none, any other for the RC channel to be used to control roll movements // @Values: 0:Disabled,5:RC5,6:RC6,7:RC7,8:RC8 // @User: Standard AP_GROUPINFO("ROLL_RC_IN", 7, AP_Mount, _roll_rc_in, 0), // @Param: ROLL_ANGLE_MIN // @DisplayName: Minimum roll angle // @Description: Minimum physical roll angular position of mount. // @Units: centi-Degrees // @Range: -18000 17999 // @Increment: 1 // @User: Standard AP_GROUPINFO("ROLL_ANGMIN", 8, AP_Mount, _roll_angle_min, -4500), // @Param: ROLL_ANGLE_MAX // @DisplayName: Maximum roll angle // @Description: Maximum physical roll angular position of the mount // @Units: centi-Degrees // @Range: -18000 17999 // @Increment: 1 // @User: Standard AP_GROUPINFO("ROLL_ANGMAX", 9, AP_Mount, _roll_angle_max, 4500), // @Param: TILT_RC_IN // @DisplayName: tilt (pitch) RC input channel // @Description: 0 for none, any other for the RC channel to be used to control tilt (pitch) movements // @Values: 0:Disabled,5:RC5,6:RC6,7:RC7,8:RC8 // @User: Standard AP_GROUPINFO("TILT_RC_IN", 10, AP_Mount, _tilt_rc_in, 0), // @Param: TILT_ANGLE_MIN // @DisplayName: Minimum tilt angle // @Description: Minimum physical tilt (pitch) angular position of mount. // @Units: centi-Degrees // @Range: -18000 17999 // @Increment: 1 // @User: Standard AP_GROUPINFO("TILT_ANGMIN", 11, AP_Mount, _tilt_angle_min, -4500), // @Param: TILT_ANGLE_MAX // @DisplayName: Maximum tilt angle // @Description: Maximum physical tilt (pitch) angular position of the mount // @Units: centi-Degrees // @Range: -18000 17999 // @Increment: 1 // @User: Standard AP_GROUPINFO("TILT_ANGMAX", 12, AP_Mount, _tilt_angle_max, 4500), // @Param: PAN_RC_IN // @DisplayName: pan (yaw) RC input channel // @Description: 0 for none, any other for the RC channel to be used to control pan (yaw) movements // @Values: 0:Disabled,5:RC5,6:RC6,7:RC7,8:RC8 // @User: Standard AP_GROUPINFO("PAN_RC_IN", 13, AP_Mount, _pan_rc_in, 0), // @Param: PAN_ANGLE_MIN // @DisplayName: Minimum pan angle // @Description: Minimum physical pan (yaw) angular position of mount. // @Units: centi-Degrees // @Range: -18000 17999 // @Increment: 1 // @User: Standard AP_GROUPINFO("PAN_ANGMIN", 14, AP_Mount, _pan_angle_min, -4500), // @Param: PAN_ANGLE_MAX // @DisplayName: Maximum pan angle // @Description: Maximum physical pan (yaw) angular position of the mount // @Units: centi-Degrees // @Range: -18000 17999 // @Increment: 1 // @User: Standard AP_GROUPINFO("PAN_ANGMAX", 15, AP_Mount, _pan_angle_max, 4500), // @Param: JOYSTICK_SPEED // @DisplayName: mount joystick speed // @Description: 0 for position control, small for low speeds, 10 for max speed // @Range: 0 10 // @Increment: 1 // @User: Standard AP_GROUPINFO("JOYSTICK_SPEED", 16, AP_Mount, _joystick_speed, 0), AP_GROUPEND }; extern RC_Channel_aux* g_rc_function[RC_Channel_aux::k_nr_aux_servo_functions]; // the aux. servo ch. assigned to each function extern RC_Channel* rc_ch[NUM_CHANNELS]; AP_Mount::AP_Mount(const struct Location *current_loc, GPS *&gps, AP_AHRS *ahrs): _gps(gps) { _ahrs = ahrs; _current_loc = current_loc; // default to zero angles _retract_angles = Vector3f(0,0,0); _neutral_angles = Vector3f(0,0,0); _control_angles = Vector3f(0,0,0); // default unknown mount type _mount_type = k_unknown; } /// Auto-detect the mount gimbal type depending on the functions assigned to the servos void AP_Mount::update_mount_type() { if ((g_rc_function[RC_Channel_aux::k_mount_roll] == NULL) && (g_rc_function[RC_Channel_aux::k_mount_tilt] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_pan] != NULL)) { _mount_type = k_pan_tilt; } if ((g_rc_function[RC_Channel_aux::k_mount_roll] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_tilt] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_pan] == NULL)) { _mount_type = k_tilt_roll; } if ((g_rc_function[RC_Channel_aux::k_mount_roll] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_tilt] != NULL) && (g_rc_function[RC_Channel_aux::k_mount_pan] != NULL)) { _mount_type = k_pan_tilt_roll; } } /// sets the servo angles for retraction, note angles are in degrees void AP_Mount::set_retract_angles(float roll, float tilt, float pan) { _retract_angles = Vector3f(roll, tilt, pan); } //sets the servo angles for neutral, note angles are in degrees void AP_Mount::set_neutral_angles(float roll, float tilt, float pan) { _neutral_angles = Vector3f(roll, tilt, pan); } /// sets the servo angles for MAVLink, note angles are in degrees void AP_Mount::set_control_angles(float roll, float tilt, float pan) { _control_angles = Vector3f(roll, tilt, pan); } /// used to tell the mount to track GPS location void AP_Mount::set_GPS_target_location(Location targetGPSLocation) { _target_GPS_location=targetGPSLocation; } /// This one should be called periodically void AP_Mount::update_mount_position() { static bool mount_open = 0; // 0 is closed switch((enum MAV_MOUNT_MODE)_mount_mode.get()) { // move mount to a "retracted position" or to a position where a fourth servo can retract the entire mount into the fuselage case MAV_MOUNT_MODE_RETRACT: { Vector3f vec = _retract_angles.get(); _roll_angle = vec.x; _tilt_angle = vec.y; _pan_angle = vec.z; break; } // move mount to a neutral position, typically pointing forward case MAV_MOUNT_MODE_NEUTRAL: { Vector3f vec = _neutral_angles.get(); _roll_angle = vec.x; _tilt_angle = vec.y; _pan_angle = vec.z; break; } // point to the angles given by a mavlink message case MAV_MOUNT_MODE_MAVLINK_TARGETING: { Vector3f vec = _control_angles.get(); _roll_control_angle = radians(vec.x); _tilt_control_angle = radians(vec.y); _pan_control_angle = radians(vec.z); stabilize(); break; } // RC radio manual angle control, but with stabilization from the AHRS case MAV_MOUNT_MODE_RC_TARGETING: { if (_joystick_speed) { // for spring loaded joysticks // allow pilot speed position input to come directly from an RC_Channel if (_roll_rc_in && (rc_ch[_roll_rc_in-1])) { //_roll_control_angle += angle_input(rc_ch[_roll_rc_in-1], _roll_angle_min, _roll_angle_max) * 0.00001 * _joystick_speed; _roll_control_angle += rc_ch[_roll_rc_in-1]->norm_input() * 0.00001 * _joystick_speed; if (_roll_control_angle < radians(_roll_angle_min*0.01)) _roll_control_angle = radians(_roll_angle_min*0.01); if (_roll_control_angle > radians(_roll_angle_max*0.01)) _roll_control_angle = radians(_roll_angle_max*0.01); } if (_tilt_rc_in && (rc_ch[_tilt_rc_in-1])) { //_tilt_control_angle += angle_input(rc_ch[_tilt_rc_in-1], _tilt_angle_min, _tilt_angle_max) * 0.00001 * _joystick_speed; _tilt_control_angle += rc_ch[_tilt_rc_in-1]->norm_input() * 0.00001 * _joystick_speed; if (_tilt_control_angle < radians(_tilt_angle_min*0.01)) _tilt_control_angle = radians(_tilt_angle_min*0.01); if (_tilt_control_angle > radians(_tilt_angle_max*0.01)) _tilt_control_angle = radians(_tilt_angle_max*0.01); } if (_pan_rc_in && (rc_ch[_pan_rc_in-1])) { //_pan_control_angle += angle_input(rc_ch[_pan_rc_in-1], _pan_angle_min, _pan_angle_max) * 0.00001 * _joystick_speed; _pan_control_angle += rc_ch[_pan_rc_in-1]->norm_input() * 0.00001 * _joystick_speed; if (_pan_control_angle < radians(_pan_angle_min*0.01)) _pan_control_angle = radians(_pan_angle_min*0.01); if (_pan_control_angle > radians(_pan_angle_max*0.01)) _pan_control_angle = radians(_pan_angle_max*0.01); } } else { // allow pilot position input to come directly from an RC_Channel if (_roll_rc_in && (rc_ch[_roll_rc_in-1])) { _roll_control_angle = angle_input_rad(rc_ch[_roll_rc_in-1], _roll_angle_min, _roll_angle_max); } if (_tilt_rc_in && (rc_ch[_tilt_rc_in-1])) { _tilt_control_angle = angle_input_rad(rc_ch[_tilt_rc_in-1], _tilt_angle_min, _tilt_angle_max); } if (_pan_rc_in && (rc_ch[_pan_rc_in-1])) { _pan_control_angle = angle_input_rad(rc_ch[_pan_rc_in-1], _pan_angle_min, _pan_angle_max); } } stabilize(); break; } // point mount to a GPS point given by the mission planner case MAV_MOUNT_MODE_GPS_POINT: { if(_gps->fix){ calc_GPS_target_angle(&_target_GPS_location); stabilize(); } break; } default: //do nothing break; } // move mount to a "retracted position" into the fuselage with a fourth servo if (g_rc_function[RC_Channel_aux::k_mount_open]){ bool mount_open_new = (enum MAV_MOUNT_MODE)_mount_mode.get()==MAV_MOUNT_MODE_RETRACT?0:1; if (mount_open != mount_open_new) { mount_open = mount_open_new; move_servo(g_rc_function[RC_Channel_aux::k_mount_open], mount_open_new, 0, 1); } } // write the results to the servos move_servo(g_rc_function[RC_Channel_aux::k_mount_roll], _roll_angle*10, _roll_angle_min*0.1, _roll_angle_max*0.1); move_servo(g_rc_function[RC_Channel_aux::k_mount_tilt], _tilt_angle*10, _tilt_angle_min*0.1, _tilt_angle_max*0.1); move_servo(g_rc_function[RC_Channel_aux::k_mount_pan ], _pan_angle*10, _pan_angle_min*0.1, _pan_angle_max*0.1); } void AP_Mount::set_mode(enum MAV_MOUNT_MODE mode) { _mount_mode = (int8_t)mode; } /// Change the configuration of the mount /// triggered by a MavLink packet. void AP_Mount::configure_msg(mavlink_message_t* msg) { __mavlink_mount_configure_t packet; mavlink_msg_mount_configure_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) { // not for us return; } set_mode((enum MAV_MOUNT_MODE)packet.mount_mode); _stab_roll = packet.stab_roll; _stab_tilt = packet.stab_pitch; _stab_pan = packet.stab_yaw; } /// Control the mount (depends on the previously set mount configuration) /// triggered by a MavLink packet. void AP_Mount::control_msg(mavlink_message_t *msg) { __mavlink_mount_control_t packet; mavlink_msg_mount_control_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) { // not for us return; } switch ((enum MAV_MOUNT_MODE)_mount_mode.get()) { case MAV_MOUNT_MODE_RETRACT: // Load and keep safe position (Roll,Pitch,Yaw) from EEPROM and stop stabilization set_retract_angles(packet.input_b*0.01, packet.input_a*0.01, packet.input_c*0.01); if (packet.save_position) { _retract_angles.save(); } break; case MAV_MOUNT_MODE_NEUTRAL: // Load and keep neutral position (Roll,Pitch,Yaw) from EEPROM set_neutral_angles(packet.input_b*0.01, packet.input_a*0.01, packet.input_c*0.01); if (packet.save_position) { _neutral_angles.save(); } break; case MAV_MOUNT_MODE_MAVLINK_TARGETING: // Load neutral position and start MAVLink Roll,Pitch,Yaw control with stabilization set_control_angles(packet.input_b*0.01, packet.input_a*0.01, packet.input_c*0.01); break; case MAV_MOUNT_MODE_RC_TARGETING: // Load neutral position and start RC Roll,Pitch,Yaw control with stabilization { Vector3f vec = _neutral_angles.get(); _roll_angle = vec.x; _tilt_angle = vec.y; _pan_angle = vec.z; } break; case MAV_MOUNT_MODE_GPS_POINT: // Load neutral position and start to point to Lat,Lon,Alt Location targetGPSLocation; targetGPSLocation.lat = packet.input_a; targetGPSLocation.lng = packet.input_b; targetGPSLocation.alt = packet.input_c; set_GPS_target_location(targetGPSLocation); break; case MAV_MOUNT_MODE_ENUM_END: break; default: // do nothing break; } } /// Return mount status information (depends on the previously set mount configuration) /// triggered by a MavLink packet. void AP_Mount::status_msg(mavlink_message_t *msg) { __mavlink_mount_status_t packet; mavlink_msg_mount_status_decode(msg, &packet); if (mavlink_check_target(packet.target_system, packet.target_component)) { // not for us return; } switch ((enum MAV_MOUNT_MODE)_mount_mode.get()) { case MAV_MOUNT_MODE_RETRACT: // safe position (Roll,Pitch,Yaw) from EEPROM and stop stabilization case MAV_MOUNT_MODE_NEUTRAL: // neutral position (Roll,Pitch,Yaw) from EEPROM case MAV_MOUNT_MODE_MAVLINK_TARGETING: // neutral position and start MAVLink Roll,Pitch,Yaw control with stabilization case MAV_MOUNT_MODE_RC_TARGETING: // neutral position and start RC Roll,Pitch,Yaw control with stabilization packet.pointing_b = _roll_angle*100; ///< degrees*100 packet.pointing_a = _tilt_angle*100; ///< degrees*100 packet.pointing_c = _pan_angle*100; ///< degrees*100 break; case MAV_MOUNT_MODE_GPS_POINT: // neutral position and start to point to Lat,Lon,Alt packet.pointing_a = _target_GPS_location.lat; ///< latitude packet.pointing_b = _target_GPS_location.lng; ///< longitude packet.pointing_c = _target_GPS_location.alt; ///< altitude break; case MAV_MOUNT_MODE_ENUM_END: break; } // status reply // TODO: is COMM_3 correct ? mavlink_msg_mount_status_send(MAVLINK_COMM_3, packet.target_system, packet.target_component, packet.pointing_a, packet.pointing_b, packet.pointing_c); } /// Set mount point/region of interest, triggered by mission script commands void AP_Mount::set_roi_cmd(struct Location *target_loc) { // set the target gps location _target_GPS_location = *target_loc; // set the mode to GPS tracking mode set_mode(MAV_MOUNT_MODE_GPS_POINT); } /// Set mount configuration, triggered by mission script commands void AP_Mount::configure_cmd() { // TODO get the information out of the mission command and use it } /// Control the mount (depends on the previously set mount configuration), triggered by mission script commands void AP_Mount::control_cmd() { // TODO get the information out of the mission command and use it } /// returns the angle (degrees*100) that the RC_Channel input is receiving int32_t AP_Mount::angle_input(RC_Channel* rc, int16_t angle_min, int16_t angle_max) { return (rc->get_reverse()?-1:1) * (rc->radio_in - rc->radio_min) * (int32_t)(angle_max - angle_min) / (rc->radio_max - rc->radio_min) + (rc->get_reverse()?angle_max:angle_min); } /// returns the angle (radians) that the RC_Channel input is receiving float AP_Mount::angle_input_rad(RC_Channel* rc, int16_t angle_min, int16_t angle_max) { return radians(angle_input(rc, angle_min, angle_max)*0.01); } void AP_Mount::calc_GPS_target_angle(struct Location *target) { float GPS_vector_x = (target->lng-_current_loc->lng)*cos(ToRad((_current_loc->lat+target->lat)*.00000005))*.01113195; float GPS_vector_y = (target->lat-_current_loc->lat)*.01113195; float GPS_vector_z = (target->alt-_current_loc->alt); // baro altitude(IN CM) should be adjusted to known home elevation before take off (Set altimeter). float target_distance = 100.0*sqrt(GPS_vector_x*GPS_vector_x + GPS_vector_y*GPS_vector_y); // Careful , centimeters here locally. Baro/alt is in cm, lat/lon is in meters. _roll_control_angle = 0; _tilt_control_angle = atan2(GPS_vector_z, target_distance); _pan_control_angle = atan2(GPS_vector_x, GPS_vector_y); } /// Stabilizes mount relative to the Earth's frame /// Inputs: /// _roll_control_angle desired roll angle in radians, /// _tilt_control_angle desired tilt/pitch angle in radians, /// _pan_control_angle desired pan/yaw angle in radians /// Outputs: /// _roll_angle stabilized roll angle in degrees, /// _tilt_angle stabilized tilt/pitch angle in degrees, /// _pan_angle stabilized pan/yaw angle in degrees void AP_Mount::stabilize() { if (_ahrs) { // only do the full 3D frame transform if we are doing pan control if (_stab_pan) { Matrix3f m; ///< holds 3 x 3 matrix, var is used as temp in calcs Matrix3f cam; ///< Rotation matrix earth to camera. Desired camera from input. Matrix3f gimbal_target; ///< Rotation matrix from plane to camera. Then Euler angles to the servos. m = _ahrs->get_dcm_matrix(); m.transpose(); cam.from_euler(_roll_control_angle, _tilt_control_angle, _pan_control_angle); gimbal_target = m * cam; gimbal_target.to_euler(&_roll_angle, &_tilt_angle, &_pan_angle); _roll_angle = _stab_roll?degrees(_roll_angle):degrees(_roll_control_angle); _tilt_angle = _stab_tilt?degrees(_tilt_angle):degrees(_tilt_control_angle); _pan_angle = degrees(_pan_angle); } else { // otherwise base mount roll and tilt on the ahrs // roll/tilt attitude, plus any requested angle _roll_angle = degrees(_roll_control_angle); _tilt_angle = degrees(_tilt_control_angle); _pan_angle = degrees(_pan_control_angle); if (_stab_roll) { _roll_angle -= degrees(_ahrs->roll); } if (_stab_tilt) { _tilt_angle -= degrees(_ahrs->pitch); } } } else { _roll_angle = degrees(_roll_control_angle); _tilt_angle = degrees(_tilt_control_angle); _pan_angle = degrees(_pan_control_angle); } } /* /// For testing and development. Called in the medium loop. void AP_Mount::debug_output() { Serial3.print("current - "); Serial3.print("lat "); Serial3.print(_current_loc->lat); Serial3.print(",lon "); Serial3.print(_current_loc->lng); Serial3.print(",alt "); Serial3.println(_current_loc->alt); Serial3.print("gps - "); Serial3.print("lat "); Serial3.print(_gps->latitude); Serial3.print(",lon "); Serial3.print(_gps->longitude); Serial3.print(",alt "); Serial3.print(_gps->altitude); Serial3.println(); Serial3.print("target - "); Serial3.print("lat "); Serial3.print(_target_GPS_location.lat); Serial3.print(",lon "); Serial3.print(_target_GPS_location.lng); Serial3.print(",alt "); Serial3.print(_target_GPS_location.alt); Serial3.print(" hdg to targ "); Serial3.print(degrees(_pan_control_angle)); Serial3.println(); } */ /// saturate to the closest angle limit if outside of [min max] angle interval /// input angle is in degrees * 10 int16_t AP_Mount::closest_limit(int16_t angle, int16_t* angle_min, int16_t* angle_max) { // Make sure the angle lies in the interval [-180 .. 180[ degrees while (angle < -1800) angle += 3600; while (angle >= 1800) angle -= 3600; // Make sure the angle limits lie in the interval [-180 .. 180[ degrees while (*angle_min < -1800) *angle_min += 3600; while (*angle_min >= 1800) *angle_min -= 3600; while (*angle_max < -1800) *angle_max += 3600; while (*angle_max >= 1800) *angle_max -= 3600; // TODO call this function somehow, otherwise this will never work //set_range(min, max); // If the angle is outside servo limits, saturate the angle to the closest limit // On a circle the closest angular position must be carefully calculated to account for wrap-around if ((angle < *angle_min) && (angle > *angle_max)){ // angle error if min limit is used int16_t err_min = *angle_min - angle + (angle<*angle_min?0:3600); // add 360 degrees if on the "wrong side" // angle error if max limit is used int16_t err_max = angle - *angle_max + (angle>*angle_max?0:3600); // add 360 degrees if on the "wrong side" angle = err_minservo_out = closest_limit(angle, &angle_min, &angle_max); // This is done every time because the user might change the min, max values on the fly rc->set_range(angle_min, angle_max); // convert angle to PWM using a linear transformation (ignores trimming because the servo limits might not be symmetric) rc->calc_pwm(); rc->output(); } }