/* * * Author: Eugene Shamaev */ #ifndef AP_UAVCAN_H_ #define AP_UAVCAN_H_ #include #include #include #include #include #include #include #include #include #ifndef UAVCAN_NODE_POOL_SIZE #define UAVCAN_NODE_POOL_SIZE 8192 #endif #ifndef UAVCAN_NODE_POOL_BLOCK_SIZE #define UAVCAN_NODE_POOL_BLOCK_SIZE 256 #endif #ifndef UAVCAN_RCO_NUMBER #define UAVCAN_RCO_NUMBER 18 #endif #define AP_UAVCAN_MAX_LISTENERS 4 #define AP_UAVCAN_MAX_GPS_NODES 4 #define AP_UAVCAN_MAX_MAG_NODES 4 #define AP_UAVCAN_MAX_BARO_NODES 4 #define AP_UAVCAN_SW_VERS_MAJOR 1 #define AP_UAVCAN_SW_VERS_MINOR 0 #define AP_UAVCAN_HW_VERS_MAJOR 1 #define AP_UAVCAN_HW_VERS_MINOR 0 class AP_UAVCAN { public: AP_UAVCAN(); ~AP_UAVCAN(); static const struct AP_Param::GroupInfo var_info[]; // this function will register the listening class on a first free channel or on the specified channel // if preferred_channel = 0 then free channel will be searched for // if preferred_channel > 0 then listener will be added to specific channel // return value is the number of assigned channel or 0 if fault // channel numbering starts from 1 uint8_t register_gps_listener(AP_GPS_Backend* new_listener, uint8_t preferred_channel); uint8_t register_gps_listener_to_node(AP_GPS_Backend* new_listener, uint8_t node); uint8_t find_gps_without_listener(void); // Removes specified listener from all nodes void remove_gps_listener(AP_GPS_Backend* rem_listener); // Returns pointer to GPS state connected with specified node. // If node is not found and there are free space, locate a new one AP_GPS::GPS_State *find_gps_node(uint8_t node); // Updates all listeners of specified node void update_gps_state(uint8_t node); struct Baro_Info { float pressure; float pressure_variance; float temperature; float temperature_variance; }; uint8_t register_baro_listener(AP_Baro_Backend* new_listener, uint8_t preferred_channel); uint8_t register_baro_listener_to_node(AP_Baro_Backend* new_listener, uint8_t node); void remove_baro_listener(AP_Baro_Backend* rem_listener); Baro_Info *find_baro_node(uint8_t node); uint8_t find_smallest_free_baro_node(); void update_baro_state(uint8_t node); struct Mag_Info { Vector3f mag_vector; }; uint8_t register_mag_listener(AP_Compass_Backend* new_listener, uint8_t preferred_channel); void remove_mag_listener(AP_Compass_Backend* rem_listener); Mag_Info *find_mag_node(uint8_t node, uint8_t sensor_id); uint8_t find_smallest_free_mag_node(); uint8_t register_mag_listener_to_node(AP_Compass_Backend* new_listener, uint8_t node); void update_mag_state(uint8_t node, uint8_t sensor_id); // synchronization for RC output bool rc_out_sem_take(); void rc_out_sem_give(); // output from do_cyclic void rc_out_send_servos(); void rc_out_send_esc(); private: // ------------------------- GPS // 255 - means free node uint8_t _gps_nodes[AP_UAVCAN_MAX_GPS_NODES]; // Counter of how many listeners are connected to this source uint8_t _gps_node_taken[AP_UAVCAN_MAX_GPS_NODES]; // GPS data of the sources AP_GPS::GPS_State _gps_node_state[AP_UAVCAN_MAX_GPS_NODES]; // 255 - means no connection uint8_t _gps_listener_to_node[AP_UAVCAN_MAX_LISTENERS]; // Listeners with callbacks to be updated AP_GPS_Backend* _gps_listeners[AP_UAVCAN_MAX_LISTENERS]; // ------------------------- BARO uint8_t _baro_nodes[AP_UAVCAN_MAX_BARO_NODES]; uint8_t _baro_node_taken[AP_UAVCAN_MAX_BARO_NODES]; Baro_Info _baro_node_state[AP_UAVCAN_MAX_BARO_NODES]; uint8_t _baro_listener_to_node[AP_UAVCAN_MAX_LISTENERS]; AP_Baro_Backend* _baro_listeners[AP_UAVCAN_MAX_LISTENERS]; // ------------------------- MAG uint8_t _mag_nodes[AP_UAVCAN_MAX_MAG_NODES]; uint8_t _mag_node_taken[AP_UAVCAN_MAX_MAG_NODES]; Mag_Info _mag_node_state[AP_UAVCAN_MAX_MAG_NODES]; uint8_t _mag_node_max_sensorid_count[AP_UAVCAN_MAX_MAG_NODES]; uint8_t _mag_listener_to_node[AP_UAVCAN_MAX_LISTENERS]; AP_Compass_Backend* _mag_listeners[AP_UAVCAN_MAX_LISTENERS]; uint8_t _mag_listener_sensor_ids[AP_UAVCAN_MAX_LISTENERS]; struct { uint16_t pulse; uint16_t safety_pulse; uint16_t failsafe_pulse; bool active; } _rco_conf[UAVCAN_RCO_NUMBER]; bool _initialized; uint8_t _rco_armed; uint8_t _rco_safety; AP_HAL::Semaphore *_rc_out_sem; class SystemClock: public uavcan::ISystemClock, uavcan::Noncopyable { SystemClock() { } uavcan::UtcDuration utc_adjustment; virtual void adjustUtc(uavcan::UtcDuration adjustment) { utc_adjustment = adjustment; } public: virtual uavcan::MonotonicTime getMonotonic() const { uavcan::uint64_t usec = 0; usec = AP_HAL::micros64(); return uavcan::MonotonicTime::fromUSec(usec); } virtual uavcan::UtcTime getUtc() const { uavcan::UtcTime utc; uavcan::uint64_t usec = 0; usec = AP_HAL::micros64(); utc.fromUSec(usec); utc += utc_adjustment; return utc; } static SystemClock& instance() { static SystemClock inst; return inst; } }; uavcan::Node<0> *_node = nullptr; uavcan::ISystemClock& get_system_clock(); uavcan::ICanDriver* get_can_driver(); uavcan::Node<0>* get_node(); // This will be needed to implement if UAVCAN is used with multithreading // Such cases will be firmware update, etc. class RaiiSynchronizer { public: RaiiSynchronizer() { } ~RaiiSynchronizer() { } }; uavcan::HeapBasedPoolAllocator _node_allocator; AP_Int8 _uavcan_node; AP_Int32 _servo_bm; AP_Int32 _esc_bm; uint8_t _uavcan_i; AP_HAL::CANManager* _parent_can_mgr; public: void do_cyclic(void); bool try_init(void); void rco_set_safety_pwm(uint32_t chmask, uint16_t pulse_len); void rco_set_failsafe_pwm(uint32_t chmask, uint16_t pulse_len); void rco_force_safety_on(void); void rco_force_safety_off(void); void rco_arm_actuators(bool arm); void rco_write(uint16_t pulse_len, uint8_t ch); void set_parent_can_mgr(AP_HAL::CANManager* parent_can_mgr) { _parent_can_mgr = parent_can_mgr; } }; #endif /* AP_UAVCAN_H_ */