// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- /// @file PID.cpp /// @brief Generic PID algorithm #include #include "PID.h" const AP_Param::GroupInfo PID::var_info[] PROGMEM = { AP_GROUPINFO("P", 0, PID, _kp), AP_GROUPINFO("I", 1, PID, _ki), AP_GROUPINFO("D", 2, PID, _kd), AP_GROUPINFO("IMAX", 3, PID, _imax), AP_GROUPEND }; long PID::get_pid(int32_t error, uint16_t dt, float scaler) { float output = 0; float delta_time = (float)dt / 1000.0; // Compute proportional component output += error * _kp; // Compute derivative component if time has elapsed if ((fabs(_kd) > 0) && (dt > 0)) { float derivative = (error - _last_error) / delta_time; // discrete low pass filter, cuts out the // high frequency noise that can drive the controller crazy float RC = 1/(2*M_PI*_fCut); derivative = _last_derivative + (delta_time / (RC + delta_time)) * (derivative - _last_derivative); // update state _last_error = error; _last_derivative = derivative; // add in derivative component output += _kd * derivative; } // scale the P and D components output *= scaler; // Compute integral component if time has elapsed if ((fabs(_ki) > 0) && (dt > 0)) { _integrator += (error * _ki) * scaler * delta_time; if (_integrator < -_imax) { _integrator = -_imax; } else if (_integrator > _imax) { _integrator = _imax; } output += _integrator; } return output; } void PID::reset_I() { _integrator = 0; _last_error = 0; _last_derivative = 0; } void PID::load_gains() { _kp.load(); _ki.load(); _kd.load(); _imax.load(); } void PID::save_gains() { _kp.save(); _ki.save(); _kd.save(); _imax.save(); }