/* ************************************************************ */ /* Test for AP_Logger Log library */ /* ************************************************************ */ #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "LoggerMessageWriter.h" class AP_Logger_Backend; enum AP_Logger_Backend_Type { DATAFLASH_BACKEND_NONE = 0, DATAFLASH_BACKEND_FILE = (1<<0), DATAFLASH_BACKEND_MAVLINK = (1<<1), DATAFLASH_BACKEND_BLOCK = (1<<2), }; // do not do anything here apart from add stuff; maintaining older // entries means log analysis is easier enum Log_Event : uint8_t { DATA_AP_STATE = 7, // DATA_SYSTEM_TIME_SET = 8, DATA_INIT_SIMPLE_BEARING = 9, DATA_ARMED = 10, DATA_DISARMED = 11, DATA_AUTO_ARMED = 15, DATA_LAND_COMPLETE_MAYBE = 17, DATA_LAND_COMPLETE = 18, DATA_NOT_LANDED = 28, DATA_LOST_GPS = 19, DATA_FLIP_START = 21, DATA_FLIP_END = 22, DATA_SET_HOME = 25, DATA_SET_SIMPLE_ON = 26, DATA_SET_SIMPLE_OFF = 27, DATA_SET_SUPERSIMPLE_ON = 29, DATA_AUTOTUNE_INITIALISED = 30, DATA_AUTOTUNE_OFF = 31, DATA_AUTOTUNE_RESTART = 32, DATA_AUTOTUNE_SUCCESS = 33, DATA_AUTOTUNE_FAILED = 34, DATA_AUTOTUNE_REACHED_LIMIT = 35, DATA_AUTOTUNE_PILOT_TESTING = 36, DATA_AUTOTUNE_SAVEDGAINS = 37, DATA_SAVE_TRIM = 38, DATA_SAVEWP_ADD_WP = 39, DATA_FENCE_ENABLE = 41, DATA_FENCE_DISABLE = 42, DATA_ACRO_TRAINER_DISABLED = 43, DATA_ACRO_TRAINER_LEVELING = 44, DATA_ACRO_TRAINER_LIMITED = 45, DATA_GRIPPER_GRAB = 46, DATA_GRIPPER_RELEASE = 47, DATA_PARACHUTE_DISABLED = 49, DATA_PARACHUTE_ENABLED = 50, DATA_PARACHUTE_RELEASED = 51, DATA_LANDING_GEAR_DEPLOYED = 52, DATA_LANDING_GEAR_RETRACTED = 53, DATA_MOTORS_EMERGENCY_STOPPED = 54, DATA_MOTORS_EMERGENCY_STOP_CLEARED = 55, DATA_MOTORS_INTERLOCK_DISABLED = 56, DATA_MOTORS_INTERLOCK_ENABLED = 57, DATA_ROTOR_RUNUP_COMPLETE = 58, // Heli only DATA_ROTOR_SPEED_BELOW_CRITICAL = 59, // Heli only DATA_EKF_ALT_RESET = 60, DATA_LAND_CANCELLED_BY_PILOT = 61, DATA_EKF_YAW_RESET = 62, DATA_AVOIDANCE_ADSB_ENABLE = 63, DATA_AVOIDANCE_ADSB_DISABLE = 64, DATA_AVOIDANCE_PROXIMITY_ENABLE = 65, DATA_AVOIDANCE_PROXIMITY_DISABLE = 66, DATA_GPS_PRIMARY_CHANGED = 67, DATA_WINCH_RELAXED = 68, DATA_WINCH_LENGTH_CONTROL = 69, DATA_WINCH_RATE_CONTROL = 70, DATA_ZIGZAG_STORE_A = 71, DATA_ZIGZAG_STORE_B = 72, DATA_LAND_REPO_ACTIVE = 73, DATA_SURFACED = 163, DATA_NOT_SURFACED = 164, DATA_BOTTOMED = 165, DATA_NOT_BOTTOMED = 166, }; // fwd declarations to avoid include errors class AC_AttitudeControl; class AC_PosControl; class AP_Logger { friend class AP_Logger_Backend; // for _num_types public: FUNCTOR_TYPEDEF(vehicle_startup_message_Writer, void); AP_Logger(const AP_Int32 &log_bitmask); /* Do not allow copies */ AP_Logger(const AP_Logger &other) = delete; AP_Logger &operator=(const AP_Logger&) = delete; // get singleton instance static AP_Logger *get_singleton(void) { return _singleton; } // initialisation void Init(const struct LogStructure *structure, uint8_t num_types); void set_num_types(uint8_t num_types) { _num_types = num_types; } bool CardInserted(void); // erase handling void EraseAll(); /* Write a block of data at current offset */ void WriteBlock(const void *pBuffer, uint16_t size); /* Write an *important* block of data at current offset */ void WriteCriticalBlock(const void *pBuffer, uint16_t size); // high level interface uint16_t find_last_log() const; void get_log_boundaries(uint16_t log_num, uint32_t & start_page, uint32_t & end_page); uint16_t get_num_logs(void); void setVehicle_Startup_Writer(vehicle_startup_message_Writer writer); void PrepForArming(); void EnableWrites(bool enable) { _writes_enabled = enable; } bool WritesEnabled() const { return _writes_enabled; } void StopLogging(); void Write_Parameter(const char *name, float value); void Write_Event(Log_Event id); void Write_GPS(uint8_t instance, uint64_t time_us=0); void Write_RFND(const RangeFinder &rangefinder); void Write_IMU(); void Write_IMUDT(uint64_t time_us, uint8_t imu_mask); bool Write_ISBH(uint16_t seqno, AP_InertialSensor::IMU_SENSOR_TYPE sensor_type, uint8_t instance, uint16_t multiplier, uint16_t sample_count, uint64_t sample_us, float sample_rate_hz); bool Write_ISBD(uint16_t isb_seqno, uint16_t seqno, const int16_t x[32], const int16_t y[32], const int16_t z[32]); void Write_Vibration(); void Write_RCIN(void); void Write_RCOUT(void); void Write_RSSI(AP_RSSI &rssi); void Write_Baro(uint64_t time_us=0); void Write_Power(void); void Write_AHRS2(AP_AHRS &ahrs); void Write_POS(AP_AHRS &ahrs); #if AP_AHRS_NAVEKF_AVAILABLE void Write_EKF(AP_AHRS_NavEKF &ahrs); #endif void Write_Radio(const mavlink_radio_t &packet); void Write_Message(const char *message); void Write_MessageF(const char *fmt, ...); void Write_CameraInfo(enum LogMessages msg, const AP_AHRS &ahrs, const Location ¤t_loc, uint64_t timestamp_us=0); void Write_Camera(const AP_AHRS &ahrs, const Location ¤t_loc, uint64_t timestamp_us=0); void Write_Trigger(const AP_AHRS &ahrs, const Location ¤t_loc); void Write_ESC(uint8_t id, uint64_t time_us, int32_t rpm, uint16_t voltage, uint16_t current, int16_t temperature, uint16_t current_tot); void Write_Airspeed(AP_Airspeed &airspeed); void Write_Attitude(AP_AHRS &ahrs, const Vector3f &targets); void Write_AttitudeView(AP_AHRS_View &ahrs, const Vector3f &targets); void Write_Current(); void Write_Compass(uint64_t time_us=0); void Write_Mode(uint8_t mode, uint8_t reason); void Write_EntireMission(); void Write_Mission_Cmd(const AP_Mission &mission, const AP_Mission::Mission_Command &cmd); void Write_Origin(uint8_t origin_type, const Location &loc); void Write_RPM(const AP_RPM &rpm_sensor); void Write_Rate(const AP_AHRS_View *ahrs, const AP_Motors &motors, const AC_AttitudeControl &attitude_control, const AC_PosControl &pos_control); void Write_RallyPoint(uint8_t total, uint8_t sequence, const RallyLocation &rally_point); void Write_VisualOdom(float time_delta, const Vector3f &angle_delta, const Vector3f &position_delta, float confidence); void Write_AOA_SSA(AP_AHRS &ahrs); void Write_Beacon(AP_Beacon &beacon); void Write_Proximity(AP_Proximity &proximity); void Write_SRTL(bool active, uint16_t num_points, uint16_t max_points, uint8_t action, const Vector3f& point); void Write(const char *name, const char *labels, const char *fmt, ...); void Write(const char *name, const char *labels, const char *units, const char *mults, const char *fmt, ...); void WriteV(const char *name, const char *labels, const char *units, const char *mults, const char *fmt, va_list arg_list); // This structure provides information on the internal member data of a PID for logging purposes struct PID_Info { float desired; float actual; float P; float I; float D; float FF; }; void Write_PID(uint8_t msg_type, const PID_Info &info); // returns true if logging of a message should be attempted bool should_log(uint32_t mask) const; bool logging_started(void); #if CONFIG_HAL_BOARD == HAL_BOARD_SITL || CONFIG_HAL_BOARD == HAL_BOARD_LINUX // currently only AP_Logger_File support this: void flush(void); #endif void handle_mavlink_msg(class GCS_MAVLINK &, mavlink_message_t* msg); void periodic_tasks(); // may want to split this into GCS/non-GCS duties // number of blocks that have been dropped uint32_t num_dropped(void) const; // accesss to public parameters void set_force_log_disarmed(bool force_logging) { _force_log_disarmed = force_logging; } bool log_while_disarmed(void) const { if (_force_log_disarmed) { return true; } return _params.log_disarmed != 0; } uint8_t log_replay(void) const { return _params.log_replay; } vehicle_startup_message_Writer _vehicle_messages; // parameter support static const struct AP_Param::GroupInfo var_info[]; struct { AP_Int8 backend_types; AP_Int8 file_bufsize; // in kilobytes AP_Int8 file_disarm_rot; AP_Int8 log_disarmed; AP_Int8 log_replay; AP_Int8 mav_bufsize; // in kilobytes } _params; const struct LogStructure *structure(uint16_t num) const; const struct UnitStructure *unit(uint16_t num) const; const struct MultiplierStructure *multiplier(uint16_t num) const; // methods for mavlink SYS_STATUS message (send_sys_status) // these methods cover only the first logging backend used - // typically AP_Logger_File. bool logging_present() const; bool logging_enabled() const; bool logging_failed() const; void set_vehicle_armed(bool armed_state); bool vehicle_is_armed() const { return _armed; } void handle_log_send(); bool in_log_download() const { return transfer_activity != IDLE; } float quiet_nanf() const { return nanf("0x4152"); } // "AR" double quiet_nan() const { return nan("0x4152445550490a"); } // "ARDUPI" // returns true if msg_type is associated with a message bool msg_type_in_use(uint8_t msg_type) const; protected: const struct LogStructure *_structures; uint8_t _num_types; const struct UnitStructure *_units = log_Units; const struct MultiplierStructure *_multipliers = log_Multipliers; const uint8_t _num_units = (sizeof(log_Units) / sizeof(log_Units[0])); const uint8_t _num_multipliers = (sizeof(log_Multipliers) / sizeof(log_Multipliers[0])); /* Write a block with specified importance */ /* might be useful if you have a boolean indicating a message is * important... */ void WritePrioritisedBlock(const void *pBuffer, uint16_t size, bool is_critical); private: #define DATAFLASH_MAX_BACKENDS 2 uint8_t _next_backend; AP_Logger_Backend *backends[DATAFLASH_MAX_BACKENDS]; const AP_Int32 &_log_bitmask; void internal_error() const; /* * support for dynamic Write; user-supplies name, format, * labels and values in a single function call. */ // this structure looks much like struct LogStructure in // LogStructure.h, however we need to remember a pointer value for // efficiency of finding message types struct log_write_fmt { struct log_write_fmt *next; uint8_t msg_type; uint8_t msg_len; uint8_t sent_mask; // bitmask of backends sent to const char *name; const char *fmt; const char *labels; const char *units; const char *mults; } *log_write_fmts; // return (possibly allocating) a log_write_fmt for a name struct log_write_fmt *msg_fmt_for_name(const char *name, const char *labels, const char *units, const char *mults, const char *fmt); const struct log_write_fmt *log_write_fmt_for_msg_type(uint8_t msg_type) const; const struct LogStructure *structure_for_msg_type(uint8_t msg_type); // return a msg_type which is not currently in use (or -1 if none available) int16_t find_free_msg_type() const; // fill LogStructure with information about msg_type bool fill_log_write_logstructure(struct LogStructure &logstruct, const uint8_t msg_type) const; // calculate the length of a message using fields specified in // fmt; includes the message header int16_t Write_calc_msg_len(const char *fmt) const; bool _armed; #if AP_AHRS_NAVEKF_AVAILABLE void Write_EKF2(AP_AHRS_NavEKF &ahrs); void Write_EKF3(AP_AHRS_NavEKF &ahrs); #endif void Write_Baro_instance(uint64_t time_us, uint8_t baro_instance, enum LogMessages type); void Write_IMU_instance(uint64_t time_us, uint8_t imu_instance, enum LogMessages type); void Write_Compass_instance(uint64_t time_us, uint8_t mag_instance, enum LogMessages type); void Write_Current_instance(uint64_t time_us, uint8_t battery_instance, enum LogMessages type, enum LogMessages celltype); void Write_IMUDT_instance(uint64_t time_us, uint8_t imu_instance, enum LogMessages type); void backend_starting_new_log(const AP_Logger_Backend *backend); static AP_Logger *_singleton; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL bool validate_structure(const struct LogStructure *logstructure, int16_t offset); void validate_structures(const struct LogStructure *logstructures, const uint8_t num_types); void dump_structure_field(const struct LogStructure *logstructure, const char *label, const uint8_t fieldnum); void dump_structures(const struct LogStructure *logstructures, const uint8_t num_types); void assert_same_fmt_for_name(const log_write_fmt *f, const char *name, const char *labels, const char *units, const char *mults, const char *fmt) const; const char* unit_name(const uint8_t unit_id); double multiplier_name(const uint8_t multiplier_id); bool seen_ids[256] = { }; #endif void Write_EKF_Timing(const char *name, uint64_t time_us, const struct ekf_timing &timing); // possibly expensive calls to start log system: void Prep(); bool _writes_enabled:1; bool _force_log_disarmed:1; /* support for retrieving logs via mavlink: */ enum transfer_activity_t : uint8_t { IDLE, // not doing anything, all file descriptors closed LISTING, // actively sending log_entry packets SENDING, // actively sending log_sending packets } transfer_activity = IDLE; // next log list entry to send uint16_t _log_next_list_entry; // last log list entry to send uint16_t _log_last_list_entry; // number of log files uint16_t _log_num_logs; // log number for data send uint16_t _log_num_data; // offset in log uint32_t _log_data_offset; // size of log file uint32_t _log_data_size; // number of bytes left to send uint32_t _log_data_remaining; // start page of log data uint32_t _log_data_page; GCS_MAVLINK *_log_sending_link; HAL_Semaphore_Recursive _log_send_sem; bool should_handle_log_message(); void handle_log_message(class GCS_MAVLINK &, mavlink_message_t *msg); void handle_log_request_list(class GCS_MAVLINK &, mavlink_message_t *msg); void handle_log_request_data(class GCS_MAVLINK &, mavlink_message_t *msg); void handle_log_request_erase(class GCS_MAVLINK &, mavlink_message_t *msg); void handle_log_request_end(class GCS_MAVLINK &, mavlink_message_t *msg); void handle_log_send_listing(); // handle LISTING state void handle_log_sending(); // handle SENDING state bool handle_log_send_data(); // send data chunk to client void get_log_info(uint16_t log_num, uint32_t &size, uint32_t &time_utc); int16_t get_log_data(uint16_t log_num, uint16_t page, uint32_t offset, uint16_t len, uint8_t *data); /* end support for retrieving logs via mavlink: */ }; namespace AP { AP_Logger &logger(); };