/* www.ArduCopter.com - www.DIYDrones.com Copyright (c) 2010. All rights reserved. An Open Source Arduino based multicopter. File : Navigation.pde Version : v1.0, Aug 27, 2010 Author(s): ArduCopter Team Ted Carancho (aeroquad), Jose Julio, Jordi Muñoz, Jani Hirvinen, Ken McEwans, Roberto Navoni, Sandro Benigno, Chris Anderson This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . * ************************************************************** * ChangeLog: * ************************************************************** * TODO: - initial functions. * ************************************************************** */ void read_GPS_data() { #ifdef IsGPS GPS_timer_old=GPS_timer; // Update GPS timer GPS_timer = millis(); GPS_Dt = (GPS_timer-GPS_timer_old)*0.001; // GPS_Dt GPS.NewData=0; // We Reset the flag... // Write GPS data to DataFlash log Log_Write_GPS(GPS.Time, GPS.Lattitude, GPS.Longitude, GPS.Altitude, GPS.Altitude, GPS.Ground_Speed, GPS.Ground_Course, GPS.Fix, GPS.NumSats); //if (GPS.Fix >= 2) if (GPS.Fix) digitalWrite(LED_Red,HIGH); // GPS Fix => RED LED else digitalWrite(LED_Red,LOW); #endif } /* GPS based Position control */ void Position_control(long lat_dest, long lon_dest) { #ifdef IsGPS long Lon_diff; long Lat_diff; Lon_diff = lon_dest - GPS.Longitude; Lat_diff = lat_dest - GPS.Lattitude; //If we have not calculated GEOG_CORRECTION_FACTOR we calculate it here as cos(lattitude) if (GEOG_CORRECTION_FACTOR==0) GEOG_CORRECTION_FACTOR = cos(ToRad(GPS.Lattitude/10000000.0)); // ROLL //Optimization : cos(yaw) = DCM_Matrix[0][0] ; sin(yaw) = DCM_Matrix[1][0] [This simplification is valid for low roll angles] gps_err_roll = (float)Lon_diff * GEOG_CORRECTION_FACTOR * DCM_Matrix[0][0] - (float)Lat_diff * DCM_Matrix[1][0]; gps_roll_D = (gps_err_roll-gps_err_roll_old) / GPS_Dt; gps_err_roll_old = gps_err_roll; gps_roll_I += gps_err_roll * GPS_Dt; gps_roll_I = constrain(gps_roll_I, -800, 800); command_gps_roll = KP_GPS_ROLL * gps_err_roll + KD_GPS_ROLL * gps_roll_D + KI_GPS_ROLL * gps_roll_I; command_gps_roll = constrain(command_gps_roll, -GPS_MAX_ANGLE, GPS_MAX_ANGLE); // Limit max command //Log_Write_PID(1,KP_GPS_ROLL*gps_err_roll*10,KI_GPS_ROLL*gps_roll_I*10,KD_GPS_ROLL*gps_roll_D*10,command_gps_roll*10); // PITCH gps_err_pitch = -(float)Lat_diff * DCM_Matrix[0][0] - (float)Lon_diff * GEOG_CORRECTION_FACTOR * DCM_Matrix[1][0]; gps_pitch_D = (gps_err_pitch - gps_err_pitch_old) / GPS_Dt; gps_err_pitch_old = gps_err_pitch; gps_pitch_I += gps_err_pitch * GPS_Dt; gps_pitch_I = constrain(gps_pitch_I, -800, 800); command_gps_pitch = KP_GPS_PITCH * gps_err_pitch + KD_GPS_PITCH * gps_pitch_D + KI_GPS_PITCH * gps_pitch_I; command_gps_pitch = constrain(command_gps_pitch, -GPS_MAX_ANGLE, GPS_MAX_ANGLE); // Limit max command //Log_Write_PID(2,KP_GPS_PITCH*gps_err_pitch*10,KI_GPS_PITCH*gps_pitch_I*10,KD_GPS_PITCH*gps_pitch_D*10,command_gps_pitch*10); #endif } /* GPS based Position control Version 2 - builds up I and D term using lat/lon instead of roll/pitch*/ void Position_control_v2(long lat_dest, long lon_dest) { #ifdef IsGPS //If we have not calculated GEOG_CORRECTION_FACTOR we calculate it here as cos(lattitude) if (GEOG_CORRECTION_FACTOR==0) GEOG_CORRECTION_FACTOR = cos(ToRad(GPS.Lattitude/10000000.0)); // store old lat & lon diff for d term? gps_err_lon_old = gps_err_lon; gps_err_lat_old = gps_err_lat; // calculate distance from target - for P term gps_err_lon = (float)(lon_dest - GPS.Longitude) * GEOG_CORRECTION_FACTOR; gps_err_lat = lat_dest - GPS.Lattitude; // add distance to I term gps_lon_I += gps_err_lon; gps_lon_I = constrain(gps_lon_I,-1200,1200); // don't let I get too big gps_lat_I += gps_err_lat; gps_lat_I = constrain(gps_lat_I,-1200,1200); // calculate the ground speed - for D term gps_lon_D = (gps_err_lon - gps_err_lon_old) / GPS_Dt; gps_lat_D = (gps_err_lat - gps_err_lat_old) / GPS_Dt; // Now separate lat & lon PID terms into roll & pitch components // ROLL //Optimization : cos(yaw) = DCM_Matrix[0][0] ; sin(yaw) = DCM_Matrix[1][0] [This simplification is valid for low roll angles] gps_err_roll = (gps_err_lon * DCM_Matrix[0][0] - gps_err_lat * DCM_Matrix[1][0]); gps_roll_I = (gps_lon_I * DCM_Matrix[0][0] - gps_lat_I * DCM_Matrix[1][0]); gps_roll_D = (gps_lon_D * DCM_Matrix[0][0] - gps_lat_D * DCM_Matrix[1][0]); command_gps_roll = KP_GPS_ROLL * gps_err_roll + KD_GPS_ROLL * gps_roll_D + KI_GPS_ROLL * gps_roll_I; command_gps_roll = constrain(command_gps_roll, -GPS_MAX_ANGLE, GPS_MAX_ANGLE); // Limit max command Log_Write_PID(1,KP_GPS_ROLL*gps_err_roll,KI_GPS_ROLL*gps_roll_I,KD_GPS_ROLL*gps_roll_D,command_gps_roll); // PITCH gps_err_pitch = (-gps_err_lat * DCM_Matrix[0][0] - gps_err_lon * DCM_Matrix[1][0]); gps_pitch_I = (-gps_lat_I * DCM_Matrix[0][0] - gps_lon_I * DCM_Matrix[1][0]); gps_pitch_D = (-gps_lat_D * DCM_Matrix[0][0] - gps_lon_D * DCM_Matrix[1][0]); command_gps_pitch = KP_GPS_PITCH * gps_err_pitch + KD_GPS_PITCH * gps_pitch_D + KI_GPS_PITCH * gps_pitch_I; command_gps_pitch = constrain(command_gps_pitch, -GPS_MAX_ANGLE, GPS_MAX_ANGLE); // Limit max command Log_Write_PID(2,KP_GPS_PITCH*gps_err_pitch,KI_GPS_PITCH*gps_pitch_I,KD_GPS_PITCH*gps_pitch_D,command_gps_pitch); #endif } void Reset_I_terms_navigation() { gps_roll_I = 0; gps_pitch_I = 0; gps_lon_I = 0; // for position hold ver 2 gps_lat_I = 0; } /* ************************************************************ */ /* Altitude control... (based on barometer) */ int Altitude_control_baro(int altitude, int target_altitude) { #define ALTITUDE_CONTROL_BARO_OUTPUT_MIN 40 #define ALTITUDE_CONTROL_BARO_OUTPUT_MAX 80 // !!!!! REMOVE THIS !!!!!!! #define KP_BARO_ALTITUDE 0.25 //0.3 #define KD_BARO_ALTITUDE 0.09 //0.09 #define KI_BARO_ALTITUDE 0.1 int command_altitude; err_altitude_old = err_altitude; err_altitude = target_altitude - altitude; baro_altitude_I += (float)err_altitude*0.05; baro_altitude_I = constrain(baro_altitude_I,-140,140); baro_altitude_D = (float)(err_altitude-err_altitude_old)/0.05; // 20Hz command_altitude = KP_ALTITUDE*err_altitude + KD_ALTITUDE*baro_altitude_D + KI_ALTITUDE*baro_altitude_I; command_altitude = initial_throttle + constrain(command_altitude,-ALTITUDE_CONTROL_BARO_OUTPUT_MIN,ALTITUDE_CONTROL_BARO_OUTPUT_MAX); Log_Write_PID(5,KP_ALTITUDE*err_altitude,KI_ALTITUDE*baro_altitude_I,KD_ALTITUDE*baro_altitude_D,command_altitude); return command_altitude; } /* ************************************************************ */ /* Altitude control... (based on sonar) */ #define GdT_SONAR_ALTITUDE 0.05 #define ALTITUDE_CONTROL_SONAR_OUTPUT_MIN 60 #define ALTITUDE_CONTROL_SONAR_OUTPUT_MAX 80 int Altitude_control_Sonar(int altitude, int target_altitude) { static int err_altitude = 0; int command_altitude; int err_altitude_old; err_altitude_old = err_altitude; err_altitude = target_altitude - altitude; sonar_altitude_I += (float)err_altitude*GdT_SONAR_ALTITUDE; sonar_altitude_I = constrain(sonar_altitude_I,-1000,1000); sonar_altitude_D = (float)(err_altitude-err_altitude_old)/GdT_SONAR_ALTITUDE; command_altitude = KP_SONAR_ALTITUDE*err_altitude + KI_SONAR_ALTITUDE*sonar_altitude_I + KD_SONAR_ALTITUDE*sonar_altitude_D ; command_altitude = initial_throttle + constrain(command_altitude,-ALTITUDE_CONTROL_SONAR_OUTPUT_MIN,ALTITUDE_CONTROL_SONAR_OUTPUT_MAX); Log_Write_PID(4,KP_SONAR_ALTITUDE*err_altitude,KI_SONAR_ALTITUDE*sonar_altitude_I,KD_SONAR_ALTITUDE*sonar_altitude_D,command_altitude); return command_altitude; } /* ************************************************************ */ /* Obstacle avoidance routine */ #ifdef IsRANGEFINDER void Obstacle_avoidance(int safeDistance) { int RF_err_roll = 0; int RF_err_pitch = 0; int RF_err_throttle = 0; float RF_roll_P; float RF_roll_D; float RF_pitch_P; float RF_pitch_D; float RF_throttle_P; float RF_throttle_D; static int RF_err_roll_old; static int RF_err_pitch_old; static int RF_err_throttle_old; int err_temp; // front right err_temp = max(safeDistance - AP_RangeFinder_frontRight.distance,0); RF_err_roll += err_temp * AP_RangeFinder_frontRight.orientation_x; RF_err_pitch += err_temp * AP_RangeFinder_frontRight.orientation_y; RF_err_throttle += err_temp * AP_RangeFinder_frontRight.orientation_z; // back right err_temp = max(safeDistance - AP_RangeFinder_backRight.distance,0); RF_err_roll += err_temp * AP_RangeFinder_backRight.orientation_x; RF_err_pitch += err_temp * AP_RangeFinder_backRight.orientation_y; RF_err_throttle += err_temp * AP_RangeFinder_backRight.orientation_z; // back left err_temp = max(safeDistance - AP_RangeFinder_backLeft.distance,0); RF_err_roll += err_temp * AP_RangeFinder_backLeft.orientation_x; RF_err_pitch += err_temp * AP_RangeFinder_backLeft.orientation_y; RF_err_throttle += err_temp * AP_RangeFinder_backLeft.orientation_z; // front left err_temp = max(safeDistance - AP_RangeFinder_frontLeft.distance,0); RF_err_roll += err_temp * AP_RangeFinder_frontLeft.orientation_x; RF_err_pitch += err_temp * AP_RangeFinder_frontLeft.orientation_y; RF_err_throttle += err_temp * AP_RangeFinder_frontLeft.orientation_z; // ROLL - P term RF_roll_P = RF_err_roll * KP_RF_ROLL; RF_roll_P = constrain(RF_roll_P,-RF_MAX_ANGLE,RF_MAX_ANGLE); // ROLL - I term RF_roll_I += RF_err_roll * 0.05 * KI_RF_ROLL; RF_roll_I = constrain(RF_roll_I,-RF_MAX_ANGLE/2,RF_MAX_ANGLE/2); // ROLL - D term RF_roll_D = (RF_err_roll-RF_err_roll_old) / 0.05 * KD_RF_ROLL; // RF_IR frequency is 20Hz (50ms) RF_roll_D = constrain(RF_roll_D,-RF_MAX_ANGLE/2,RF_MAX_ANGLE/2); RF_err_roll_old = RF_err_roll; // ROLL - full comand command_RF_roll = RF_roll_P + RF_roll_I + RF_roll_D; command_RF_roll = constrain(command_RF_roll,-RF_MAX_ANGLE,RF_MAX_ANGLE); // Limit max command // PITCH - P term RF_pitch_P = RF_err_pitch * KP_RF_PITCH; RF_pitch_P = constrain(RF_pitch_P,-RF_MAX_ANGLE,RF_MAX_ANGLE); // PITCH - I term RF_pitch_I += RF_err_pitch * 0.05 * KI_RF_PITCH; RF_pitch_I = constrain(RF_pitch_I,-RF_MAX_ANGLE/2,RF_MAX_ANGLE/2); // PITCH - D term RF_pitch_D = (RF_err_pitch-RF_err_pitch_old) / 0.05 * KD_RF_PITCH; // RF_IR frequency is 20Hz (50ms) RF_pitch_D = constrain(RF_pitch_D,-RF_MAX_ANGLE/2,RF_MAX_ANGLE/2); RF_err_pitch_old = RF_err_pitch; // PITCH - full comand command_RF_pitch = RF_pitch_P + RF_pitch_I + RF_pitch_D; command_RF_pitch = constrain(command_RF_pitch,-RF_MAX_ANGLE,RF_MAX_ANGLE); // Limit max command // THROTTLE - not yet implemented command_RF_throttle = 0; } #endif