/*
  SITL handling

  This simulates an analog airspeed sensor

  Andrew Tridgell November 2011
 */

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL && !defined(HAL_BUILD_AP_PERIPH)

#include "AP_HAL_SITL.h"
#include "AP_HAL_SITL_Namespace.h"
#include "HAL_SITL_Class.h"
#include "SITL_State.h"
#include <SITL/SITL.h>
#include <AP_Math/AP_Math.h>

extern const AP_HAL::HAL& hal;

using namespace HALSITL;

/*
  convert airspeed in m/s to an airspeed sensor value
 */
void SITL_State::_update_airspeed(float airspeed)
{
    float airspeed2 = airspeed;
    const float airspeed_ratio = 1.9936f;
    const float diff_pressure = sq(airspeed) * 0.5;
    
    // apply noise to the differential pressure. This emulates the way
    // airspeed noise reduces with speed
    airspeed = sqrtf(fabsf(2*(diff_pressure + _sitl->arspd_noise[0] * rand_float())));
    airspeed2 = sqrtf(fabsf(2*(diff_pressure + _sitl->arspd_noise[1] * rand_float())));

    // check sensor failure
    if (is_positive(_sitl->arspd_fail[0])) {
        airspeed = _sitl->arspd_fail[0];
    }
    if (is_positive(_sitl->arspd_fail[1])) {
        airspeed2 = _sitl->arspd_fail[1];
    }

    if (!is_zero(_sitl->arspd_fail_pressure[0])) {
        // compute a realistic pressure report given some level of trapper air pressure in the tube and our current altitude
        // algorithm taken from https://en.wikipedia.org/wiki/Calibrated_airspeed#Calculation_from_impact_pressure
        float tube_pressure = fabsf(_sitl->arspd_fail_pressure[0] - AP::baro().get_pressure() + _sitl->arspd_fail_pitot_pressure[0]);
        airspeed = 340.29409348 * sqrt(5 * (pow((tube_pressure / SSL_AIR_PRESSURE + 1), 2.0/7.0) - 1.0));
    }
    if (!is_zero(_sitl->arspd_fail_pressure[1])) {
        // compute a realistic pressure report given some level of trapper air pressure in the tube and our current altitude
        // algorithm taken from https://en.wikipedia.org/wiki/Calibrated_airspeed#Calculation_from_impact_pressure
        float tube_pressure = fabsf(_sitl->arspd_fail_pressure[1] - AP::baro().get_pressure() + _sitl->arspd_fail_pitot_pressure[1]);
        airspeed2 = 340.29409348 * sqrt(5 * (pow((tube_pressure / SSL_AIR_PRESSURE + 1), 2.0/7.0) - 1.0));
    }

    float airspeed_pressure = (airspeed * airspeed) / airspeed_ratio;
    float airspeed2_pressure = (airspeed2 * airspeed2) / airspeed_ratio;

    // flip sign here for simulating reversed pitot/static connections
    if (_sitl->arspd_signflip) airspeed_pressure *= -1;
    if (_sitl->arspd_signflip) airspeed2_pressure *= -1;

    // apply airspeed sensor offset in m/s
    float airspeed_raw = airspeed_pressure + _sitl->arspd_offset[0];
    float airspeed2_raw = airspeed2_pressure + _sitl->arspd_offset[1];

    _sitl->state.airspeed_raw_pressure[0] = airspeed_pressure;
    _sitl->state.airspeed_raw_pressure[1] = airspeed2_pressure;

    if (airspeed_raw / 4 > 0xFFFF) {
        airspeed_pin_value = 0xFFFF;
        return;
    }
    if (airspeed2_raw / 4 > 0xFFFF) {
        airspeed_2_pin_value = 0xFFFF;
        return;
    }
    // add delay
    const uint32_t now = AP_HAL::millis();
    uint32_t best_time_delta_wind = 200;  // initialise large time representing buffer entry closest to current time - delay.
    uint8_t best_index_wind = 0;  // initialise number representing the index of the entry in buffer closest to delay.

    // storing data from sensor to buffer
    if (now - last_store_time_wind >= 10) {  // store data every 10 ms.
        last_store_time_wind = now;
        if (store_index_wind > wind_buffer_length - 1) {  // reset buffer index if index greater than size of buffer
            store_index_wind = 0;
        }
        buffer_wind[store_index_wind].data = airspeed_raw;  // add data to current index
        buffer_wind[store_index_wind].time = last_store_time_wind;  // add time to current index
        buffer_wind_2[store_index_wind].data = airspeed2_raw;  // add data to current index
        buffer_wind_2[store_index_wind].time = last_store_time_wind;  // add time to current index
        store_index_wind = store_index_wind + 1;  // increment index
    }

    // return delayed measurement
    delayed_time_wind = now - _sitl->wind_delay;  // get time corresponding to delay
    // find data corresponding to delayed time in buffer
    for (uint8_t i = 0; i <= wind_buffer_length - 1; i++) {
        // find difference between delayed time and time stamp in buffer
        time_delta_wind = abs(
                (int32_t)(delayed_time_wind - buffer_wind[i].time));
        // if this difference is smaller than last delta, store this time
        if (time_delta_wind < best_time_delta_wind) {
            best_index_wind = i;
            best_time_delta_wind = time_delta_wind;
        }
    }
    if (best_time_delta_wind < 200) {  // only output stored state if < 200 msec retrieval error
        airspeed_raw = buffer_wind[best_index_wind].data;
        airspeed2_raw = buffer_wind_2[best_index_wind].data;
    }

    airspeed_pin_value = airspeed_raw / 4;
    airspeed_2_pin_value = airspeed2_raw / 4;
}

#endif