// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #ifndef __AP_MOTORS_CLASS_H__ #define __AP_MOTORS_CLASS_H__ #include #include #include // ArduPilot Mega Vector/Matrix math Library #include // Notify library #include // RC Channel Library #include // filter library // offsets for motors in motor_out, _motor_filtered and _motor_to_channel_map arrays #define AP_MOTORS_MOT_1 0 #define AP_MOTORS_MOT_2 1 #define AP_MOTORS_MOT_3 2 #define AP_MOTORS_MOT_4 3 #define AP_MOTORS_MOT_5 4 #define AP_MOTORS_MOT_6 5 #define AP_MOTORS_MOT_7 6 #define AP_MOTORS_MOT_8 7 #define MOTOR_TO_CHANNEL_MAP CH_1,CH_2,CH_3,CH_4,CH_5,CH_6,CH_7,CH_8 #define AP_MOTORS_MAX_NUM_MOTORS 8 // frame definitions #define AP_MOTORS_PLUS_FRAME 0 #define AP_MOTORS_X_FRAME 1 #define AP_MOTORS_V_FRAME 2 #define AP_MOTORS_H_FRAME 3 // same as X frame but motors spin in opposite direction #define AP_MOTORS_VTAIL_FRAME 4 // Lynxmotion Hunter VTail 400/500 #define AP_MOTORS_ATAIL_FRAME 5 // A-Shaped VTail Quads #define AP_MOTORS_NEW_PLUS_FRAME 10 // NEW frames are same as original 4 but with motor orders changed to be clockwise from the front #define AP_MOTORS_NEW_X_FRAME 11 #define AP_MOTORS_NEW_V_FRAME 12 #define AP_MOTORS_NEW_H_FRAME 13 // same as X frame but motors spin in opposite direction // motor update rate #define AP_MOTORS_SPEED_DEFAULT 490 // default output rate to the motors /// @class AP_Motors class AP_Motors { public: // Constructor AP_Motors(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT); // set update rate to motors - a value in hertz virtual void set_update_rate( uint16_t speed_hz ) { _speed_hz = speed_hz; }; // set frame orientation (normally + or X) virtual void set_frame_orientation( uint8_t new_orientation ) { _flags.frame_orientation = new_orientation; }; // arm, disarm or check status status of motors bool armed() const { return _flags.armed; }; void armed(bool arm); // set motor interlock status void set_interlock(bool set) { _flags.interlock = set;} // get motor interlock status. true means motors run, false motors don't run bool get_interlock() const { return _flags.interlock; }; // set_roll, set_pitch, set_yaw, set_throttle void set_roll(int16_t roll_in) { _roll_control_input = roll_in; }; // range -4500 ~ 4500 void set_pitch(int16_t pitch_in) { _pitch_control_input = pitch_in; }; // range -4500 ~ 4500 void set_yaw(int16_t yaw_in) { _yaw_control_input = yaw_in; }; // range -4500 ~ 4500 void set_throttle(float throttle_in) { _throttle_in = constrain_float(throttle_in,-100.0f,1100.0f); }; // range 0 ~ 1000 void set_stabilizing(bool stabilizing) { _flags.stabilizing = stabilizing; } // accessors for roll, pitch, yaw and throttle inputs to motors float get_roll() const { return _roll_control_input; } float get_pitch() const { return _pitch_control_input; } float get_yaw() const { return _yaw_control_input; } float get_throttle() const { return _throttle_control_input; } void set_throttle_filter_cutoff(float filt_hz) { _throttle_filter.set_cutoff_frequency(filt_hz); } // // voltage, current and air pressure compensation or limiting features - multicopters only // // set_voltage - set voltage to be used for output scaling void set_voltage(float volts){ _batt_voltage = volts; } // set_current - set current to be used for output scaling void set_current(float current){ _batt_current = current; } // set_density_ratio - sets air density as a proportion of sea level density void set_air_density_ratio(float ratio) { _air_density_ratio = ratio; } // structure for holding motor limit flags struct AP_Motors_limit { uint8_t roll_pitch : 1; // we have reached roll or pitch limit uint8_t yaw : 1; // we have reached yaw limit uint8_t throttle_lower : 1; // we have reached throttle's lower limit uint8_t throttle_upper : 1; // we have reached throttle's upper limit } limit; // // virtual functions that should be implemented by child classes // // init virtual void Init() = 0; // enable - starts allowing signals to be sent to motors virtual void enable() = 0; // output - sends commands to the motors virtual void output() = 0; // output_min - sends minimum values out to the motors virtual void output_min() = 0; // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 virtual void output_test(uint8_t motor_seq, int16_t pwm) = 0; // slow_start - set to true to slew motors from current speed to maximum // Note: this must be set immediately before a step up in throttle virtual void slow_start(bool true_false) = 0; // get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict virtual uint16_t get_motor_mask() = 0; protected: // output functions that should be overloaded by child classes virtual void output_armed_stabilizing()=0; virtual void output_armed_not_stabilizing()=0; virtual void output_armed_zero_throttle() { output_min(); } virtual void output_disarmed()=0; // update the throttle input filter virtual void update_throttle_filter() = 0; // flag bitmask struct AP_Motors_flags { uint8_t armed : 1; // 0 if disarmed, 1 if armed uint8_t stabilizing : 1; // 0 if not controlling attitude, 1 if controlling attitude uint8_t frame_orientation : 4; // PLUS_FRAME 0, X_FRAME 1, V_FRAME 2, H_FRAME 3, NEW_PLUS_FRAME 10, NEW_X_FRAME, NEW_V_FRAME, NEW_H_FRAME uint8_t interlock : 1; // 1 if the motor interlock is enabled (i.e. motors run), 0 if disabled (motors don't run) } _flags; // mapping of motor number (as received from upper APM code) to RC channel output - used to account for differences between APM1 and APM2 static const uint8_t _motor_to_channel_map[AP_MOTORS_MAX_NUM_MOTORS] PROGMEM; // internal variables float _roll_control_input; // desired roll control from attitude controllers, +/- 4500 float _pitch_control_input; // desired pitch control from attitude controller, +/- 4500 float _throttle_control_input; // desired throttle (thrust) control from attitude controller, 0-1000 float _yaw_control_input; // desired yaw control from attitude controller, +/- 4500 float _throttle_pwm_scalar; // scalar used to convert throttle channel pwm range into 0-1000 range, ~0.8 - 1.0 uint16_t _loop_rate; // rate at which output() function is called (normally 400hz) uint16_t _speed_hz; // speed in hz to send updates to motors int16_t _throttle_radio_min; // minimum radio channel pwm int16_t _throttle_radio_max; // maximum radio channel pwm float _throttle_in; // last throttle input from set_throttle caller LowPassFilterFloat _throttle_filter; // throttle input filter // battery voltage, current and air pressure compensation variables float _batt_voltage; // latest battery voltage reading float _batt_current; // latest battery current reading float _air_density_ratio; // air density / sea level density - decreases in altitude }; #endif // __AP_MOTORS_CLASS_H__