/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #ifndef Mavlink_Common_H #define Mavlink_Common_H #if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK || GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK byte mavdelay = 0; static uint8_t mavlink_check_target(uint8_t sysid, uint8_t compid) { //Serial.print("target = "); Serial.print(sysid, DEC); Serial.print("\tcomp = "); Serial.println(compid, DEC); if (sysid != mavlink_system.sysid){ return 1; // Currently we are not checking for correct compid since APM is not passing mavlink info to any subsystem // If it is addressed to our system ID we assume it is for us //}else if(compid != mavlink_system.compid){ // gcs.send_text_P(SEVERITY_LOW,PSTR("component id mismatch")); // return 1; // XXX currently not receiving correct compid from gcs }else{ return 0; // no error } } // try to send a message, return false if it won't fit in the serial tx buffer static bool mavlink_try_send_message(mavlink_channel_t chan, uint8_t id, uint16_t packet_drops) { uint64_t timeStamp = micros(); int payload_space = comm_get_txspace(chan) - MAVLINK_NUM_NON_PAYLOAD_BYTES; #define CHECK_PAYLOAD_SIZE(id) if (payload_space < MAVLINK_MSG_ID_## id ##_LEN) return false if (chan == MAVLINK_COMM_1 && millis() < MAVLINK_TELEMETRY_PORT_DELAY) { // defer any messages on the telemetry port for 1 second after // bootup, to try to prevent bricking of Xbees return false; } switch(id) { case MSG_HEARTBEAT: { CHECK_PAYLOAD_SIZE(HEARTBEAT); mavlink_msg_heartbeat_send( chan, mavlink_system.type, MAV_AUTOPILOT_ARDUPILOTMEGA); break; } case MSG_EXTENDED_STATUS1: { CHECK_PAYLOAD_SIZE(SYS_STATUS); uint8_t mode = MAV_MODE_UNINIT; uint8_t nav_mode = MAV_NAV_VECTOR; switch(control_mode) { case LOITER: mode = MAV_MODE_AUTO; nav_mode = MAV_NAV_HOLD; break; case AUTO: mode = MAV_MODE_AUTO; nav_mode = MAV_NAV_WAYPOINT; break; case RTL: mode = MAV_MODE_AUTO; nav_mode = MAV_NAV_RETURNING; break; case GUIDED: mode = MAV_MODE_GUIDED; break; default: mode = control_mode + 100; } uint8_t status = MAV_STATE_ACTIVE; uint16_t battery_remaining = 1000.0 * (float)(g.pack_capacity - current_total)/(float)g.pack_capacity; //Mavlink scaling 100% = 1000 mavlink_msg_sys_status_send( chan, mode, nav_mode, status, 0, battery_voltage * 1000, battery_remaining, packet_drops); break; } case MSG_EXTENDED_STATUS2: { CHECK_PAYLOAD_SIZE(MEMINFO); extern unsigned __brkval; mavlink_msg_meminfo_send(chan, __brkval, memcheck_available_memory()); break; } case MSG_ATTITUDE: { //Vector3f omega = dcm.get_gyro(); CHECK_PAYLOAD_SIZE(ATTITUDE); mavlink_msg_attitude_send( chan, timeStamp, dcm.roll, dcm.pitch, dcm.yaw, omega.x, omega.y, omega.z); break; } case MSG_LOCATION: { CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT); Matrix3f rot = dcm.get_dcm_matrix(); // neglecting angle of attack for now mavlink_msg_global_position_int_send( chan, current_loc.lat, current_loc.lng, /*current_loc.alt * 10,*/ // changed to absolute altitude g_gps->altitude, g_gps->ground_speed * rot.a.x, g_gps->ground_speed * rot.b.x, g_gps->ground_speed * rot.c.x); break; } case MSG_NAV_CONTROLLER_OUTPUT: { //if (control_mode != MANUAL) { CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT); mavlink_msg_nav_controller_output_send( chan, nav_roll / 1.0e2, nav_pitch / 1.0e2, target_bearing / 1.0e2, target_bearing / 1.0e2, wp_distance, altitude_error / 1.0e2, 0, 0); //} break; } case MSG_LOCAL_LOCATION: { CHECK_PAYLOAD_SIZE(LOCAL_POSITION); Matrix3f rot = dcm.get_dcm_matrix(); // neglecting angle of attack for now mavlink_msg_local_position_send( chan, timeStamp, ToRad((current_loc.lat - home.lat) / 1.0e7) * radius_of_earth, ToRad((current_loc.lng - home.lng) / 1.0e7) * radius_of_earth * cos(ToRad(home.lat / 1.0e7)), (current_loc.alt - home.alt) / 1.0e2, g_gps->ground_speed / 1.0e2 * rot.a.x, g_gps->ground_speed / 1.0e2 * rot.b.x, g_gps->ground_speed / 1.0e2 * rot.c.x); break; } case MSG_GPS_RAW: { CHECK_PAYLOAD_SIZE(GPS_RAW); mavlink_msg_gps_raw_send( chan, timeStamp, g_gps->status(), g_gps->latitude / 1.0e7, g_gps->longitude / 1.0e7, g_gps->altitude / 100.0, g_gps->hdop, 0.0, g_gps->ground_speed / 100.0, g_gps->ground_course / 100.0); break; } case MSG_SERVO_OUT: { CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED); uint8_t rssi = 1; // normalized values scaled to -10000 to 10000 // This is used for HIL. Do not change without discussing with HIL maintainers mavlink_msg_rc_channels_scaled_send( chan, 10000 * g.rc_1.norm_output(), 10000 * g.rc_2.norm_output(), 10000 * g.rc_3.norm_output(), 10000 * g.rc_4.norm_output(), 0, 0, 0, 0, rssi); break; } case MSG_RADIO_IN: { CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW); uint8_t rssi = 1; mavlink_msg_rc_channels_raw_send( chan, g.rc_1.radio_in, g.rc_2.radio_in, g.rc_3.radio_in, g.rc_4.radio_in, g.rc_5.radio_in, g.rc_6.radio_in, g.rc_7.radio_in, g.rc_8.radio_in, rssi); break; } case MSG_RADIO_OUT: { CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW); mavlink_msg_servo_output_raw_send( chan, motor_out[0], motor_out[1], motor_out[2], motor_out[3], motor_out[4], motor_out[5], motor_out[6], motor_out[7]); break; } case MSG_VFR_HUD: { CHECK_PAYLOAD_SIZE(VFR_HUD); mavlink_msg_vfr_hud_send( chan, (float)airspeed / 100.0, (float)g_gps->ground_speed / 100.0, (dcm.yaw_sensor / 100) % 360, g.rc_3.servo_out/10, /*current_loc.alt / 100.0,*/ // changed to absolute altitude g_gps->altitude/100.0, climb_rate); break; } #if HIL_MODE != HIL_MODE_ATTITUDE case MSG_RAW_IMU1: { CHECK_PAYLOAD_SIZE(RAW_IMU); Vector3f accel = imu.get_accel(); Vector3f gyro = imu.get_gyro(); //Serial.printf_P(PSTR("sending accel: %f %f %f\n"), accel.x, accel.y, accel.z); //Serial.printf_P(PSTR("sending gyro: %f %f %f\n"), gyro.x, gyro.y, gyro.z); mavlink_msg_raw_imu_send( chan, timeStamp, accel.x * 1000.0 / gravity, accel.y * 1000.0 / gravity, accel.z * 1000.0 / gravity, gyro.x * 1000.0, gyro.y * 1000.0, gyro.z * 1000.0, compass.mag_x, compass.mag_y, compass.mag_z); break; } case MSG_RAW_IMU2: { CHECK_PAYLOAD_SIZE(SCALED_PRESSURE); mavlink_msg_scaled_pressure_send( chan, timeStamp, (float)barometer.Press/100.0, (float)(barometer.Press-ground_pressure)/100.0, (int)(barometer.Temp*10)); break; } case MSG_RAW_IMU3: { CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS); Vector3f mag_offsets = compass.get_offsets(); mavlink_msg_sensor_offsets_send(chan, mag_offsets.x, mag_offsets.y, mag_offsets.z, compass.get_declination(), barometer.RawPress, barometer.RawTemp, imu.gx(), imu.gy(), imu.gz(), imu.ax(), imu.ay(), imu.az()); break; } #endif // HIL_PROTOCOL != HIL_PROTOCOL_ATTITUDE case MSG_GPS_STATUS: { CHECK_PAYLOAD_SIZE(GPS_STATUS); mavlink_msg_gps_status_send( chan, g_gps->num_sats, NULL, NULL, NULL, NULL, NULL); break; } case MSG_CURRENT_WAYPOINT: { CHECK_PAYLOAD_SIZE(WAYPOINT_CURRENT); mavlink_msg_waypoint_current_send( chan, g.waypoint_index); break; } default: break; } return true; } #define MAX_DEFERRED_MESSAGES 17 // should be at least equal to number of // switch types in mavlink_try_send_message() static struct mavlink_queue { uint8_t deferred_messages[MAX_DEFERRED_MESSAGES]; uint8_t next_deferred_message; uint8_t num_deferred_messages; } mavlink_queue[2]; // send a message using mavlink static void mavlink_send_message(mavlink_channel_t chan, uint8_t id, uint16_t packet_drops) { uint8_t i, nextid; struct mavlink_queue *q = &mavlink_queue[(uint8_t)chan]; // see if we can send the deferred messages, if any while (q->num_deferred_messages != 0) { if (!mavlink_try_send_message(chan, q->deferred_messages[q->next_deferred_message], packet_drops)) { break; } q->next_deferred_message++; if (q->next_deferred_message == MAX_DEFERRED_MESSAGES) { q->next_deferred_message = 0; } q->num_deferred_messages--; } if (id == MSG_RETRY_DEFERRED) { return; } // this message id might already be deferred for (i=0, nextid = q->next_deferred_message; i < q->num_deferred_messages; i++) { if (q->deferred_messages[nextid] == id) { // its already deferred, discard return; } nextid++; if (nextid == MAX_DEFERRED_MESSAGES) { nextid = 0; } } if (q->num_deferred_messages != 0 || !mavlink_try_send_message(chan, id, packet_drops)) { // can't send it now, so defer it if (q->num_deferred_messages == MAX_DEFERRED_MESSAGES) { // the defer buffer is full, discard return; } nextid = q->next_deferred_message + q->num_deferred_messages; if (nextid >= MAX_DEFERRED_MESSAGES) { nextid -= MAX_DEFERRED_MESSAGES; } q->deferred_messages[nextid] = id; q->num_deferred_messages++; } } void mavlink_send_text(mavlink_channel_t chan, uint8_t severity, const char *str) { if (chan == MAVLINK_COMM_1 && millis() < MAVLINK_TELEMETRY_PORT_DELAY) { // don't send status MAVLink messages for 1 second after // bootup, to try to prevent Xbee bricking return; } mavlink_msg_statustext_send( chan, severity, (const int8_t*) str); } void mavlink_acknowledge(mavlink_channel_t chan, uint8_t id, uint8_t sum1, uint8_t sum2) { } #endif // mavlink in use #endif // inclusion guard