// Monocypher version 3.1.2 // // This file is dual-licensed. Choose whichever licence you want from // the two licences listed below. // // The first licence is a regular 2-clause BSD licence. The second licence // is the CC-0 from Creative Commons. It is intended to release Monocypher // to the public domain. The BSD licence serves as a fallback option. // // SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0 // // ------------------------------------------------------------------------ // // Copyright (c) 2017-2020, Loup Vaillant // All rights reserved. // // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // ------------------------------------------------------------------------ // // Written in 2017-2020 by Loup Vaillant // // To the extent possible under law, the author(s) have dedicated all copyright // and related neighboring rights to this software to the public domain // worldwide. This software is distributed without any warranty. // // You should have received a copy of the CC0 Public Domain Dedication along // with this software. If not, see // <https://creativecommons.org/publicdomain/zero/1.0/> #include "monocypher.h" // we don't need Argon2 #define MONOCYPHER_ARGON2_ENABLE 0 // we want the bootloader to be as small as possible #define BLAKE2_NO_UNROLLING 1 ///////////////// /// Utilities /// ///////////////// #define FOR_T(type, i0, start, end) for (type i0 = (start); i0 < (end); i0++) #define FOR(i1, start, end) FOR_T(size_t, i1, start, end) #define COPY(dst, src, size) FOR(i2, 0, size) (dst)[i2] = (src)[i2] #define ZERO(buf, size) FOR(i3, 0, size) (buf)[i3] = 0 #define WIPE_CTX(ctx) crypto_wipe(ctx , sizeof(*(ctx))) #define WIPE_BUFFER(buffer) crypto_wipe(buffer, sizeof(buffer)) #define MIN(a, b) ((a) <= (b) ? (a) : (b)) #define MAX(a, b) ((a) >= (b) ? (a) : (b)) typedef int8_t i8; typedef uint8_t u8; typedef int16_t i16; typedef uint32_t u32; typedef int32_t i32; typedef int64_t i64; typedef uint64_t u64; static const u8 zero[128] = {0}; // returns the smallest positive integer y such that // (x + y) % pow_2 == 0 // Basically, it's how many bytes we need to add to "align" x. // Only works when pow_2 is a power of 2. // Note: we use ~x+1 instead of -x to avoid compiler warnings static size_t align(size_t x, size_t pow_2) { return (~x + 1) & (pow_2 - 1); } static u32 load24_le(const u8 s[3]) { return (u32)s[0] | ((u32)s[1] << 8) | ((u32)s[2] << 16); } static u32 load32_le(const u8 s[4]) { return (u32)s[0] | ((u32)s[1] << 8) | ((u32)s[2] << 16) | ((u32)s[3] << 24); } static u64 load64_le(const u8 s[8]) { return load32_le(s) | ((u64)load32_le(s+4) << 32); } static void store32_le(u8 out[4], u32 in) { out[0] = in & 0xff; out[1] = (in >> 8) & 0xff; out[2] = (in >> 16) & 0xff; out[3] = (in >> 24) & 0xff; } static void store64_le(u8 out[8], u64 in) { store32_le(out , (u32)in ); store32_le(out + 4, in >> 32); } static void load32_le_buf (u32 *dst, const u8 *src, size_t size) { FOR(i, 0, size) { dst[i] = load32_le(src + i*4); } } static void load64_le_buf (u64 *dst, const u8 *src, size_t size) { FOR(i, 0, size) { dst[i] = load64_le(src + i*8); } } static void store32_le_buf(u8 *dst, const u32 *src, size_t size) { FOR(i, 0, size) { store32_le(dst + i*4, src[i]); } } static void store64_le_buf(u8 *dst, const u64 *src, size_t size) { FOR(i, 0, size) { store64_le(dst + i*8, src[i]); } } static u64 rotr64(u64 x, u64 n) { return (x >> n) ^ (x << (64 - n)); } static u32 rotl32(u32 x, u32 n) { return (x << n) ^ (x >> (32 - n)); } static int neq0(u64 diff) { // constant time comparison to zero // return diff != 0 ? -1 : 0 u64 half = (diff >> 32) | ((u32)diff); return (1 & ((half - 1) >> 32)) - 1; } static u64 x16(const u8 a[16], const u8 b[16]) { return (load64_le(a + 0) ^ load64_le(b + 0)) | (load64_le(a + 8) ^ load64_le(b + 8)); } static u64 x32(const u8 a[32],const u8 b[32]){return x16(a,b)| x16(a+16, b+16);} static u64 x64(const u8 a[64],const u8 b[64]){return x32(a,b)| x32(a+32, b+32);} int crypto_verify16(const u8 a[16], const u8 b[16]){ return neq0(x16(a, b)); } int crypto_verify32(const u8 a[32], const u8 b[32]){ return neq0(x32(a, b)); } int crypto_verify64(const u8 a[64], const u8 b[64]){ return neq0(x64(a, b)); } void crypto_wipe(void *secret, size_t size) { volatile u8 *v_secret = (u8*)secret; ZERO(v_secret, size); } ///////////////// /// Chacha 20 /// ///////////////// #define QUARTERROUND(a, b, c, d) \ a += b; d = rotl32(d ^ a, 16); \ c += d; b = rotl32(b ^ c, 12); \ a += b; d = rotl32(d ^ a, 8); \ c += d; b = rotl32(b ^ c, 7) static void chacha20_rounds(u32 out[16], const u32 in[16]) { // The temporary variables make Chacha20 10% faster. u32 t0 = in[ 0]; u32 t1 = in[ 1]; u32 t2 = in[ 2]; u32 t3 = in[ 3]; u32 t4 = in[ 4]; u32 t5 = in[ 5]; u32 t6 = in[ 6]; u32 t7 = in[ 7]; u32 t8 = in[ 8]; u32 t9 = in[ 9]; u32 t10 = in[10]; u32 t11 = in[11]; u32 t12 = in[12]; u32 t13 = in[13]; u32 t14 = in[14]; u32 t15 = in[15]; FOR (i, 0, 10) { // 20 rounds, 2 rounds per loop. QUARTERROUND(t0, t4, t8 , t12); // column 0 QUARTERROUND(t1, t5, t9 , t13); // column 1 QUARTERROUND(t2, t6, t10, t14); // column 2 QUARTERROUND(t3, t7, t11, t15); // column 3 QUARTERROUND(t0, t5, t10, t15); // diagonal 0 QUARTERROUND(t1, t6, t11, t12); // diagonal 1 QUARTERROUND(t2, t7, t8 , t13); // diagonal 2 QUARTERROUND(t3, t4, t9 , t14); // diagonal 3 } out[ 0] = t0; out[ 1] = t1; out[ 2] = t2; out[ 3] = t3; out[ 4] = t4; out[ 5] = t5; out[ 6] = t6; out[ 7] = t7; out[ 8] = t8; out[ 9] = t9; out[10] = t10; out[11] = t11; out[12] = t12; out[13] = t13; out[14] = t14; out[15] = t15; } static void chacha20_init_key(u32 block[16], const u8 key[32]) { load32_le_buf(block , (const u8*)"expand 32-byte k", 4); // constant load32_le_buf(block+4, key , 8); // key } void crypto_hchacha20(u8 out[32], const u8 key[32], const u8 in [16]) { u32 block[16]; chacha20_init_key(block, key); // input load32_le_buf(block + 12, in, 4); chacha20_rounds(block, block); // prevent reversal of the rounds by revealing only half of the buffer. store32_le_buf(out , block , 4); // constant store32_le_buf(out+16, block+12, 4); // counter and nonce WIPE_BUFFER(block); } u64 crypto_chacha20_ctr(u8 *cipher_text, const u8 *plain_text, size_t text_size, const u8 key[32], const u8 nonce[8], u64 ctr) { u32 input[16]; chacha20_init_key(input, key); input[12] = (u32) ctr; input[13] = (u32)(ctr >> 32); load32_le_buf(input+14, nonce, 2); // Whole blocks u32 pool[16]; size_t nb_blocks = text_size >> 6; FOR (i, 0, nb_blocks) { chacha20_rounds(pool, input); if (plain_text != 0) { FOR (j, 0, 16) { u32 p = pool[j] + input[j]; store32_le(cipher_text, p ^ load32_le(plain_text)); cipher_text += 4; plain_text += 4; } } else { FOR (j, 0, 16) { u32 p = pool[j] + input[j]; store32_le(cipher_text, p); cipher_text += 4; } } input[12]++; if (input[12] == 0) { input[13]++; } } text_size &= 63; // Last (incomplete) block if (text_size > 0) { if (plain_text == 0) { plain_text = zero; } chacha20_rounds(pool, input); u8 tmp[64]; FOR (i, 0, 16) { store32_le(tmp + i*4, pool[i] + input[i]); } FOR (i, 0, text_size) { cipher_text[i] = tmp[i] ^ plain_text[i]; } WIPE_BUFFER(tmp); } ctr = input[12] + ((u64)input[13] << 32) + (text_size > 0); WIPE_BUFFER(pool); WIPE_BUFFER(input); return ctr; } u32 crypto_ietf_chacha20_ctr(u8 *cipher_text, const u8 *plain_text, size_t text_size, const u8 key[32], const u8 nonce[12], u32 ctr) { u64 big_ctr = ctr + ((u64)load32_le(nonce) << 32); return (u32)crypto_chacha20_ctr(cipher_text, plain_text, text_size, key, nonce + 4, big_ctr); } u64 crypto_xchacha20_ctr(u8 *cipher_text, const u8 *plain_text, size_t text_size, const u8 key[32], const u8 nonce[24], u64 ctr) { u8 sub_key[32]; crypto_hchacha20(sub_key, key, nonce); ctr = crypto_chacha20_ctr(cipher_text, plain_text, text_size, sub_key, nonce+16, ctr); WIPE_BUFFER(sub_key); return ctr; } void crypto_chacha20(u8 *cipher_text, const u8 *plain_text, size_t text_size, const u8 key[32], const u8 nonce[8]) { crypto_chacha20_ctr(cipher_text, plain_text, text_size, key, nonce, 0); } void crypto_ietf_chacha20(u8 *cipher_text, const u8 *plain_text, size_t text_size, const u8 key[32], const u8 nonce[12]) { crypto_ietf_chacha20_ctr(cipher_text, plain_text, text_size, key, nonce, 0); } void crypto_xchacha20(u8 *cipher_text, const u8 *plain_text, size_t text_size, const u8 key[32], const u8 nonce[24]) { crypto_xchacha20_ctr(cipher_text, plain_text, text_size, key, nonce, 0); } ///////////////// /// Poly 1305 /// ///////////////// // h = (h + c) * r // preconditions: // ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff // ctx->c <= 1_ffffffff_ffffffff_ffffffff_ffffffff // ctx->r <= 0ffffffc_0ffffffc_0ffffffc_0fffffff // Postcondition: // ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff static void poly_block(crypto_poly1305_ctx *ctx) { // s = h + c, without carry propagation const u64 s0 = ctx->h[0] + (u64)ctx->c[0]; // s0 <= 1_fffffffe const u64 s1 = ctx->h[1] + (u64)ctx->c[1]; // s1 <= 1_fffffffe const u64 s2 = ctx->h[2] + (u64)ctx->c[2]; // s2 <= 1_fffffffe const u64 s3 = ctx->h[3] + (u64)ctx->c[3]; // s3 <= 1_fffffffe const u32 s4 = ctx->h[4] + ctx->c[4]; // s4 <= 5 // Local all the things! const u32 r0 = ctx->r[0]; // r0 <= 0fffffff const u32 r1 = ctx->r[1]; // r1 <= 0ffffffc const u32 r2 = ctx->r[2]; // r2 <= 0ffffffc const u32 r3 = ctx->r[3]; // r3 <= 0ffffffc const u32 rr0 = (r0 >> 2) * 5; // rr0 <= 13fffffb // lose 2 bits... const u32 rr1 = (r1 >> 2) + r1; // rr1 <= 13fffffb // rr1 == (r1 >> 2) * 5 const u32 rr2 = (r2 >> 2) + r2; // rr2 <= 13fffffb // rr1 == (r2 >> 2) * 5 const u32 rr3 = (r3 >> 2) + r3; // rr3 <= 13fffffb // rr1 == (r3 >> 2) * 5 // (h + c) * r, without carry propagation const u64 x0 = s0*r0+ s1*rr3+ s2*rr2+ s3*rr1+ s4*rr0; // <= 97ffffe007fffff8 const u64 x1 = s0*r1+ s1*r0 + s2*rr3+ s3*rr2+ s4*rr1; // <= 8fffffe20ffffff6 const u64 x2 = s0*r2+ s1*r1 + s2*r0 + s3*rr3+ s4*rr2; // <= 87ffffe417fffff4 const u64 x3 = s0*r3+ s1*r2 + s2*r1 + s3*r0 + s4*rr3; // <= 7fffffe61ffffff2 const u32 x4 = s4 * (r0 & 3); // ...recover 2 bits // <= f // partial reduction modulo 2^130 - 5 const u32 u5 = x4 + (x3 >> 32); // u5 <= 7ffffff5 const u64 u0 = (u5 >> 2) * 5 + (x0 & 0xffffffff); const u64 u1 = (u0 >> 32) + (x1 & 0xffffffff) + (x0 >> 32); const u64 u2 = (u1 >> 32) + (x2 & 0xffffffff) + (x1 >> 32); const u64 u3 = (u2 >> 32) + (x3 & 0xffffffff) + (x2 >> 32); const u64 u4 = (u3 >> 32) + (u5 & 3); // Update the hash ctx->h[0] = (u32)u0; // u0 <= 1_9ffffff0 ctx->h[1] = (u32)u1; // u1 <= 1_97ffffe0 ctx->h[2] = (u32)u2; // u2 <= 1_8fffffe2 ctx->h[3] = (u32)u3; // u3 <= 1_87ffffe4 ctx->h[4] = (u32)u4; // u4 <= 4 } // (re-)initialises the input counter and input buffer static void poly_clear_c(crypto_poly1305_ctx *ctx) { ZERO(ctx->c, 4); ctx->c_idx = 0; } static void poly_take_input(crypto_poly1305_ctx *ctx, u8 input) { size_t word = ctx->c_idx >> 2; size_t byte = ctx->c_idx & 3; ctx->c[word] |= (u32)input << (byte * 8); ctx->c_idx++; } static void poly_update(crypto_poly1305_ctx *ctx, const u8 *message, size_t message_size) { FOR (i, 0, message_size) { poly_take_input(ctx, message[i]); if (ctx->c_idx == 16) { poly_block(ctx); poly_clear_c(ctx); } } } void crypto_poly1305_init(crypto_poly1305_ctx *ctx, const u8 key[32]) { // Initial hash is zero ZERO(ctx->h, 5); // add 2^130 to every input block ctx->c[4] = 1; poly_clear_c(ctx); // load r and pad (r has some of its bits cleared) load32_le_buf(ctx->r , key , 4); load32_le_buf(ctx->pad, key+16, 4); FOR (i, 0, 1) { ctx->r[i] &= 0x0fffffff; } FOR (i, 1, 4) { ctx->r[i] &= 0x0ffffffc; } } void crypto_poly1305_update(crypto_poly1305_ctx *ctx, const u8 *message, size_t message_size) { if (message_size == 0) { return; } // Align ourselves with block boundaries size_t aligned = MIN(align(ctx->c_idx, 16), message_size); poly_update(ctx, message, aligned); message += aligned; message_size -= aligned; // Process the message block by block size_t nb_blocks = message_size >> 4; FOR (i, 0, nb_blocks) { load32_le_buf(ctx->c, message, 4); poly_block(ctx); message += 16; } if (nb_blocks > 0) { poly_clear_c(ctx); } message_size &= 15; // remaining bytes poly_update(ctx, message, message_size); } void crypto_poly1305_final(crypto_poly1305_ctx *ctx, u8 mac[16]) { // Process the last block (if any) if (ctx->c_idx != 0) { // move the final 1 according to remaining input length // (We may add less than 2^130 to the last input block) ctx->c[4] = 0; poly_take_input(ctx, 1); // one last hash update poly_block(ctx); } // check if we should subtract 2^130-5 by performing the // corresponding carry propagation. u64 c = 5; FOR (i, 0, 4) { c += ctx->h[i]; c >>= 32; } c += ctx->h[4]; c = (c >> 2) * 5; // shift the carry back to the beginning // c now indicates how many times we should subtract 2^130-5 (0 or 1) FOR (i, 0, 4) { c += (u64)ctx->h[i] + ctx->pad[i]; store32_le(mac + i*4, (u32)c); c = c >> 32; } WIPE_CTX(ctx); } void crypto_poly1305(u8 mac[16], const u8 *message, size_t message_size, const u8 key[32]) { crypto_poly1305_ctx ctx; crypto_poly1305_init (&ctx, key); crypto_poly1305_update(&ctx, message, message_size); crypto_poly1305_final (&ctx, mac); } //////////////// /// Blake2 b /// //////////////// static const u64 iv[8] = { 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179, }; // increment the input offset static void blake2b_incr(crypto_blake2b_ctx *ctx) { u64 *x = ctx->input_offset; size_t y = ctx->input_idx; x[0] += y; if (x[0] < y) { x[1]++; } } static void blake2b_compress(crypto_blake2b_ctx *ctx, int is_last_block) { static const u8 sigma[12][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, }; // init work vector u64 v0 = ctx->hash[0]; u64 v8 = iv[0]; u64 v1 = ctx->hash[1]; u64 v9 = iv[1]; u64 v2 = ctx->hash[2]; u64 v10 = iv[2]; u64 v3 = ctx->hash[3]; u64 v11 = iv[3]; u64 v4 = ctx->hash[4]; u64 v12 = iv[4] ^ ctx->input_offset[0]; u64 v5 = ctx->hash[5]; u64 v13 = iv[5] ^ ctx->input_offset[1]; u64 v6 = ctx->hash[6]; u64 v14 = iv[6] ^ (u64)~(is_last_block - 1); u64 v7 = ctx->hash[7]; u64 v15 = iv[7]; // mangle work vector u64 *input = ctx->input; #define BLAKE2_G(a, b, c, d, x, y) \ a += b + x; d = rotr64(d ^ a, 32); \ c += d; b = rotr64(b ^ c, 24); \ a += b + y; d = rotr64(d ^ a, 16); \ c += d; b = rotr64(b ^ c, 63) #define BLAKE2_ROUND(i) \ BLAKE2_G(v0, v4, v8 , v12, input[sigma[i][ 0]], input[sigma[i][ 1]]); \ BLAKE2_G(v1, v5, v9 , v13, input[sigma[i][ 2]], input[sigma[i][ 3]]); \ BLAKE2_G(v2, v6, v10, v14, input[sigma[i][ 4]], input[sigma[i][ 5]]); \ BLAKE2_G(v3, v7, v11, v15, input[sigma[i][ 6]], input[sigma[i][ 7]]); \ BLAKE2_G(v0, v5, v10, v15, input[sigma[i][ 8]], input[sigma[i][ 9]]); \ BLAKE2_G(v1, v6, v11, v12, input[sigma[i][10]], input[sigma[i][11]]); \ BLAKE2_G(v2, v7, v8 , v13, input[sigma[i][12]], input[sigma[i][13]]); \ BLAKE2_G(v3, v4, v9 , v14, input[sigma[i][14]], input[sigma[i][15]]) #ifdef BLAKE2_NO_UNROLLING FOR (i, 0, 12) { BLAKE2_ROUND(i); } #else BLAKE2_ROUND(0); BLAKE2_ROUND(1); BLAKE2_ROUND(2); BLAKE2_ROUND(3); BLAKE2_ROUND(4); BLAKE2_ROUND(5); BLAKE2_ROUND(6); BLAKE2_ROUND(7); BLAKE2_ROUND(8); BLAKE2_ROUND(9); BLAKE2_ROUND(10); BLAKE2_ROUND(11); #endif // update hash ctx->hash[0] ^= v0 ^ v8; ctx->hash[1] ^= v1 ^ v9; ctx->hash[2] ^= v2 ^ v10; ctx->hash[3] ^= v3 ^ v11; ctx->hash[4] ^= v4 ^ v12; ctx->hash[5] ^= v5 ^ v13; ctx->hash[6] ^= v6 ^ v14; ctx->hash[7] ^= v7 ^ v15; } static void blake2b_set_input(crypto_blake2b_ctx *ctx, u8 input, size_t index) { if (index == 0) { ZERO(ctx->input, 16); } size_t word = index >> 3; size_t byte = index & 7; ctx->input[word] |= (u64)input << (byte << 3); } static void blake2b_end_block(crypto_blake2b_ctx *ctx) { if (ctx->input_idx == 128) { // If buffer is full, blake2b_incr(ctx); // update the input offset blake2b_compress(ctx, 0); // and compress the (not last) block ctx->input_idx = 0; } } static void blake2b_update(crypto_blake2b_ctx *ctx, const u8 *message, size_t message_size) { FOR (i, 0, message_size) { blake2b_end_block(ctx); blake2b_set_input(ctx, message[i], ctx->input_idx); ctx->input_idx++; } } void crypto_blake2b_general_init(crypto_blake2b_ctx *ctx, size_t hash_size, const u8 *key, size_t key_size) { // initial hash COPY(ctx->hash, iv, 8); ctx->hash[0] ^= 0x01010000 ^ (key_size << 8) ^ hash_size; ctx->input_offset[0] = 0; // beginning of the input, no offset ctx->input_offset[1] = 0; // beginning of the input, no offset ctx->hash_size = hash_size; // remember the hash size we want ctx->input_idx = 0; // if there is a key, the first block is that key (padded with zeroes) if (key_size > 0) { u8 key_block[128] = {0}; COPY(key_block, key, key_size); // same as calling crypto_blake2b_update(ctx, key_block , 128) load64_le_buf(ctx->input, key_block, 16); ctx->input_idx = 128; } } void crypto_blake2b_init(crypto_blake2b_ctx *ctx) { crypto_blake2b_general_init(ctx, 64, 0, 0); } void crypto_blake2b_update(crypto_blake2b_ctx *ctx, const u8 *message, size_t message_size) { if (message_size == 0) { return; } // Align ourselves with block boundaries size_t aligned = MIN(align(ctx->input_idx, 128), message_size); blake2b_update(ctx, message, aligned); message += aligned; message_size -= aligned; // Process the message block by block FOR (i, 0, message_size >> 7) { // number of blocks blake2b_end_block(ctx); load64_le_buf(ctx->input, message, 16); message += 128; ctx->input_idx = 128; } message_size &= 127; // remaining bytes blake2b_update(ctx, message, message_size); } void crypto_blake2b_final(crypto_blake2b_ctx *ctx, u8 *hash) { // Pad the end of the block with zeroes FOR (i, ctx->input_idx, 128) { blake2b_set_input(ctx, 0, i); } blake2b_incr(ctx); // update the input offset blake2b_compress(ctx, 1); // compress the last block size_t nb_words = ctx->hash_size >> 3; store64_le_buf(hash, ctx->hash, nb_words); FOR (i, nb_words << 3, ctx->hash_size) { hash[i] = (ctx->hash[i >> 3] >> (8 * (i & 7))) & 0xff; } WIPE_CTX(ctx); } void crypto_blake2b_general(u8 *hash , size_t hash_size, const u8 *key , size_t key_size, const u8 *message, size_t message_size) { crypto_blake2b_ctx ctx; crypto_blake2b_general_init(&ctx, hash_size, key, key_size); crypto_blake2b_update(&ctx, message, message_size); crypto_blake2b_final(&ctx, hash); } void crypto_blake2b(u8 hash[64], const u8 *message, size_t message_size) { crypto_blake2b_general(hash, 64, 0, 0, message, message_size); } static void blake2b_vtable_init(void *ctx) { crypto_blake2b_init(&((crypto_sign_ctx*)ctx)->hash); } static void blake2b_vtable_update(void *ctx, const u8 *m, size_t s) { crypto_blake2b_update(&((crypto_sign_ctx*)ctx)->hash, m, s); } static void blake2b_vtable_final(void *ctx, u8 *h) { crypto_blake2b_final(&((crypto_sign_ctx*)ctx)->hash, h); } const crypto_sign_vtable crypto_blake2b_vtable = { crypto_blake2b, blake2b_vtable_init, blake2b_vtable_update, blake2b_vtable_final, sizeof(crypto_sign_ctx), }; #if MONOCYPHER_ARGON2_ENABLE //////////////// /// Argon2 i /// //////////////// // references to R, Z, Q etc. come from the spec // Argon2 operates on 1024 byte blocks. typedef struct { u64 a[128]; } block; static void wipe_block(block *b) { volatile u64* a = b->a; ZERO(a, 128); } // updates a Blake2 hash with a 32 bit word, little endian. static void blake_update_32(crypto_blake2b_ctx *ctx, u32 input) { u8 buf[4]; store32_le(buf, input); crypto_blake2b_update(ctx, buf, 4); WIPE_BUFFER(buf); } static void load_block(block *b, const u8 bytes[1024]) { load64_le_buf(b->a, bytes, 128); } static void store_block(u8 bytes[1024], const block *b) { store64_le_buf(bytes, b->a, 128); } static void copy_block(block *o,const block*in){FOR(i,0,128)o->a[i] = in->a[i];} static void xor_block(block *o,const block*in){FOR(i,0,128)o->a[i]^= in->a[i];} // Hash with a virtually unlimited digest size. // Doesn't extract more entropy than the base hash function. // Mainly used for filling a whole kilobyte block with pseudo-random bytes. // (One could use a stream cipher with a seed hash as the key, but // this would introduce another dependency —and point of failure.) static void extended_hash(u8 *digest, u32 digest_size, const u8 *input , u32 input_size) { crypto_blake2b_ctx ctx; crypto_blake2b_general_init(&ctx, MIN(digest_size, 64), 0, 0); blake_update_32 (&ctx, digest_size); crypto_blake2b_update (&ctx, input, input_size); crypto_blake2b_final (&ctx, digest); if (digest_size > 64) { // the conversion to u64 avoids integer overflow on // ludicrously big hash sizes. u32 r = (u32)(((u64)digest_size + 31) >> 5) - 2; u32 i = 1; u32 in = 0; u32 out = 32; while (i < r) { // Input and output overlap. This is intentional crypto_blake2b(digest + out, digest + in, 64); i += 1; in += 32; out += 32; } crypto_blake2b_general(digest + out, digest_size - (32 * r), 0, 0, // no key digest + in , 64); } } #define LSB(x) ((x) & 0xffffffff) #define G(a, b, c, d) \ a += b + 2 * LSB(a) * LSB(b); d ^= a; d = rotr64(d, 32); \ c += d + 2 * LSB(c) * LSB(d); b ^= c; b = rotr64(b, 24); \ a += b + 2 * LSB(a) * LSB(b); d ^= a; d = rotr64(d, 16); \ c += d + 2 * LSB(c) * LSB(d); b ^= c; b = rotr64(b, 63) #define ROUND(v0, v1, v2, v3, v4, v5, v6, v7, \ v8, v9, v10, v11, v12, v13, v14, v15) \ G(v0, v4, v8, v12); G(v1, v5, v9, v13); \ G(v2, v6, v10, v14); G(v3, v7, v11, v15); \ G(v0, v5, v10, v15); G(v1, v6, v11, v12); \ G(v2, v7, v8, v13); G(v3, v4, v9, v14) // Core of the compression function G. Computes Z from R in place. static void g_rounds(block *work_block) { // column rounds (work_block = Q) for (int i = 0; i < 128; i += 16) { ROUND(work_block->a[i ], work_block->a[i + 1], work_block->a[i + 2], work_block->a[i + 3], work_block->a[i + 4], work_block->a[i + 5], work_block->a[i + 6], work_block->a[i + 7], work_block->a[i + 8], work_block->a[i + 9], work_block->a[i + 10], work_block->a[i + 11], work_block->a[i + 12], work_block->a[i + 13], work_block->a[i + 14], work_block->a[i + 15]); } // row rounds (work_block = Z) for (int i = 0; i < 16; i += 2) { ROUND(work_block->a[i ], work_block->a[i + 1], work_block->a[i + 16], work_block->a[i + 17], work_block->a[i + 32], work_block->a[i + 33], work_block->a[i + 48], work_block->a[i + 49], work_block->a[i + 64], work_block->a[i + 65], work_block->a[i + 80], work_block->a[i + 81], work_block->a[i + 96], work_block->a[i + 97], work_block->a[i + 112], work_block->a[i + 113]); } } // The compression function G (copy version for the first pass) static void g_copy(block *result, const block *x, const block *y, block* tmp) { copy_block(tmp , x ); // tmp = X xor_block (tmp , y ); // tmp = X ^ Y = R copy_block(result, tmp); // result = R (only difference with g_xor) g_rounds (tmp); // tmp = Z xor_block (result, tmp); // result = R ^ Z } // The compression function G (xor version for subsequent passes) static void g_xor(block *result, const block *x, const block *y, block *tmp) { copy_block(tmp , x ); // tmp = X xor_block (tmp , y ); // tmp = X ^ Y = R xor_block (result, tmp); // result = R ^ old (only difference with g_copy) g_rounds (tmp); // tmp = Z xor_block (result, tmp); // result = R ^ old ^ Z } // Unary version of the compression function. // The missing argument is implied zero. // Does the transformation in place. static void unary_g(block *work_block, block *tmp) { // work_block == R copy_block(tmp, work_block); // tmp = R g_rounds (work_block); // work_block = Z xor_block (work_block, tmp); // work_block = Z ^ R } // Argon2i uses a kind of stream cipher to determine which reference // block it will take to synthesise the next block. This context hold // that stream's state. (It's very similar to Chacha20. The block b // is analogous to Chacha's own pool) typedef struct { block b; u32 pass_number; u32 slice_number; u32 nb_blocks; u32 nb_iterations; u32 ctr; u32 offset; } gidx_ctx; // The block in the context will determine array indices. To avoid // timing attacks, it only depends on public information. No looking // at a previous block to seed the next. This makes offline attacks // easier, but timing attacks are the bigger threat in many settings. static void gidx_refresh(gidx_ctx *ctx) { // seed the beginning of the block... ctx->b.a[0] = ctx->pass_number; ctx->b.a[1] = 0; // lane number (we have only one) ctx->b.a[2] = ctx->slice_number; ctx->b.a[3] = ctx->nb_blocks; ctx->b.a[4] = ctx->nb_iterations; ctx->b.a[5] = 1; // type: Argon2i ctx->b.a[6] = ctx->ctr; ZERO(ctx->b.a + 7, 121); // ...then zero the rest out // Shuffle the block thus: ctx->b = G((G(ctx->b, zero)), zero) // (G "square" function), to get cheap pseudo-random numbers. block tmp; unary_g(&ctx->b, &tmp); unary_g(&ctx->b, &tmp); wipe_block(&tmp); } static void gidx_init(gidx_ctx *ctx, u32 pass_number, u32 slice_number, u32 nb_blocks, u32 nb_iterations) { ctx->pass_number = pass_number; ctx->slice_number = slice_number; ctx->nb_blocks = nb_blocks; ctx->nb_iterations = nb_iterations; ctx->ctr = 0; // Offset from the beginning of the segment. For the first slice // of the first pass, we start at the *third* block, so the offset // starts at 2, not 0. if (pass_number != 0 || slice_number != 0) { ctx->offset = 0; } else { ctx->offset = 2; ctx->ctr++; // Compensates for missed lazy creation gidx_refresh(ctx); // at the start of gidx_next() } } static u32 gidx_next(gidx_ctx *ctx) { // lazily creates the offset block we need if ((ctx->offset & 127) == 0) { ctx->ctr++; gidx_refresh(ctx); } u32 index = ctx->offset & 127; // save index for current call u32 offset = ctx->offset; // save offset for current call ctx->offset++; // update offset for next call // Computes the area size. // Pass 0 : all already finished segments plus already constructed // blocks in this segment // Pass 1+: 3 last segments plus already constructed // blocks in this segment. THE SPEC SUGGESTS OTHERWISE. // I CONFORM TO THE REFERENCE IMPLEMENTATION. int first_pass = ctx->pass_number == 0; u32 slice_size = ctx->nb_blocks >> 2; u32 nb_segments = first_pass ? ctx->slice_number : 3; u32 area_size = nb_segments * slice_size + offset - 1; // Computes the starting position of the reference area. // CONTRARY TO WHAT THE SPEC SUGGESTS, IT STARTS AT THE // NEXT SEGMENT, NOT THE NEXT BLOCK. u32 next_slice = ((ctx->slice_number + 1) & 3) * slice_size; u32 start_pos = first_pass ? 0 : next_slice; // Generate offset from J1 (no need for J2, there's only one lane) u64 j1 = ctx->b.a[index] & 0xffffffff; // pseudo-random number u64 x = (j1 * j1) >> 32; u64 y = (area_size * x) >> 32; u64 z = (area_size - 1) - y; u64 ref = start_pos + z; // ref < 2 * nb_blocks return (u32)(ref < ctx->nb_blocks ? ref : ref - ctx->nb_blocks); } // Main algorithm void crypto_argon2i_general(u8 *hash, u32 hash_size, void *work_area, u32 nb_blocks, u32 nb_iterations, const u8 *password, u32 password_size, const u8 *salt, u32 salt_size, const u8 *key, u32 key_size, const u8 *ad, u32 ad_size) { // work area seen as blocks (must be suitably aligned) block *blocks = (block*)work_area; { crypto_blake2b_ctx ctx; crypto_blake2b_init(&ctx); blake_update_32 (&ctx, 1 ); // p: number of threads blake_update_32 (&ctx, hash_size ); blake_update_32 (&ctx, nb_blocks ); blake_update_32 (&ctx, nb_iterations); blake_update_32 (&ctx, 0x13 ); // v: version number blake_update_32 (&ctx, 1 ); // y: Argon2i blake_update_32 (&ctx, password_size); crypto_blake2b_update(&ctx, password, password_size); blake_update_32 (&ctx, salt_size); crypto_blake2b_update(&ctx, salt, salt_size); blake_update_32 (&ctx, key_size); crypto_blake2b_update(&ctx, key, key_size); blake_update_32 (&ctx, ad_size); crypto_blake2b_update(&ctx, ad, ad_size); u8 initial_hash[72]; // 64 bytes plus 2 words for future hashes crypto_blake2b_final(&ctx, initial_hash); // fill first 2 blocks block tmp_block; u8 hash_area[1024]; store32_le(initial_hash + 64, 0); // first additional word store32_le(initial_hash + 68, 0); // second additional word extended_hash(hash_area, 1024, initial_hash, 72); load_block(&tmp_block, hash_area); copy_block(blocks, &tmp_block); store32_le(initial_hash + 64, 1); // slight modification extended_hash(hash_area, 1024, initial_hash, 72); load_block(&tmp_block, hash_area); copy_block(blocks + 1, &tmp_block); WIPE_BUFFER(initial_hash); WIPE_BUFFER(hash_area); wipe_block(&tmp_block); } // Actual number of blocks nb_blocks -= nb_blocks & 3; // round down to 4 p (p == 1 thread) const u32 segment_size = nb_blocks >> 2; // fill (then re-fill) the rest of the blocks block tmp; gidx_ctx ctx; // public information, no need to wipe FOR_T (u32, pass_number, 0, nb_iterations) { int first_pass = pass_number == 0; FOR_T (u32, segment, 0, 4) { gidx_init(&ctx, pass_number, segment, nb_blocks, nb_iterations); // On the first segment of the first pass, // blocks 0 and 1 are already filled. // We use the offset to skip them. u32 start_offset = first_pass && segment == 0 ? 2 : 0; u32 segment_start = segment * segment_size + start_offset; u32 segment_end = (segment + 1) * segment_size; FOR_T (u32, current_block, segment_start, segment_end) { u32 reference_block = gidx_next(&ctx); u32 previous_block = current_block == 0 ? nb_blocks - 1 : current_block - 1; block *c = blocks + current_block; block *p = blocks + previous_block; block *r = blocks + reference_block; if (first_pass) { g_copy(c, p, r, &tmp); } else { g_xor (c, p, r, &tmp); } } } } wipe_block(&tmp); u8 final_block[1024]; store_block(final_block, blocks + (nb_blocks - 1)); // wipe work area volatile u64 *p = (u64*)work_area; ZERO(p, 128 * nb_blocks); // hash the very last block with H' into the output hash extended_hash(hash, hash_size, final_block, 1024); WIPE_BUFFER(final_block); } void crypto_argon2i(u8 *hash, u32 hash_size, void *work_area, u32 nb_blocks, u32 nb_iterations, const u8 *password, u32 password_size, const u8 *salt, u32 salt_size) { crypto_argon2i_general(hash, hash_size, work_area, nb_blocks, nb_iterations, password, password_size, salt , salt_size, 0,0,0,0); } #endif // MONOCYPHER_ARGON2_ENABLE //////////////////////////////////// /// Arithmetic modulo 2^255 - 19 /// //////////////////////////////////// // Originally taken from SUPERCOP's ref10 implementation. // A bit bigger than TweetNaCl, over 4 times faster. // field element typedef i32 fe[10]; // field constants // // fe_one : 1 // sqrtm1 : sqrt(-1) // d : -121665 / 121666 // D2 : 2 * -121665 / 121666 // lop_x, lop_y: low order point in Edwards coordinates // ufactor : -sqrt(-1) * 2 // A2 : 486662^2 (A squared) static const fe fe_one = {1}; static const fe sqrtm1 = {-32595792, -7943725, 9377950, 3500415, 12389472, -272473, -25146209, -2005654, 326686, 11406482,}; static const fe d = {-10913610, 13857413, -15372611, 6949391, 114729, -8787816, -6275908, -3247719, -18696448, -12055116,}; static const fe D2 = {-21827239, -5839606, -30745221, 13898782, 229458, 15978800, -12551817, -6495438, 29715968, 9444199,}; static const fe lop_x = {21352778, 5345713, 4660180, -8347857, 24143090, 14568123, 30185756, -12247770, -33528939, 8345319,}; static const fe lop_y = {-6952922, -1265500, 6862341, -7057498, -4037696, -5447722, 31680899, -15325402, -19365852, 1569102,}; static const fe ufactor = {-1917299, 15887451, -18755900, -7000830, -24778944, 544946, -16816446, 4011309, -653372, 10741468,}; static const fe A2 = {12721188, 3529, 0, 0, 0, 0, 0, 0, 0, 0,}; static void fe_0(fe h) { ZERO(h , 10); } static void fe_1(fe h) { h[0] = 1; ZERO(h+1, 9); } static void fe_copy(fe h,const fe f ){FOR(i,0,10) h[i] = f[i]; } static void fe_neg (fe h,const fe f ){FOR(i,0,10) h[i] = -f[i]; } static void fe_add (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] + g[i];} static void fe_sub (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] - g[i];} static void fe_cswap(fe f, fe g, int b) { i32 mask = -b; // -1 = 0xffffffff FOR (i, 0, 10) { i32 x = (f[i] ^ g[i]) & mask; f[i] = f[i] ^ x; g[i] = g[i] ^ x; } } static void fe_ccopy(fe f, const fe g, int b) { i32 mask = -b; // -1 = 0xffffffff FOR (i, 0, 10) { i32 x = (f[i] ^ g[i]) & mask; f[i] = f[i] ^ x; } } // Signed carry propagation // ------------------------ // // Let t be a number. It can be uniquely decomposed thus: // // t = h*2^26 + l // such that -2^25 <= l < 2^25 // // Let c = (t + 2^25) / 2^26 (rounded down) // c = (h*2^26 + l + 2^25) / 2^26 (rounded down) // c = h + (l + 2^25) / 2^26 (rounded down) // c = h (exactly) // Because 0 <= l + 2^25 < 2^26 // // Let u = t - c*2^26 // u = h*2^26 + l - h*2^26 // u = l // Therefore, -2^25 <= u < 2^25 // // Additionally, if |t| < x, then |h| < x/2^26 (rounded down) // // Notations: // - In C, 1<<25 means 2^25. // - In C, x>>25 means floor(x / (2^25)). // - All of the above applies with 25 & 24 as well as 26 & 25. // // // Note on negative right shifts // ----------------------------- // // In C, x >> n, where x is a negative integer, is implementation // defined. In practice, all platforms do arithmetic shift, which is // equivalent to division by 2^26, rounded down. Some compilers, like // GCC, even guarantee it. // // If we ever stumble upon a platform that does not propagate the sign // bit (we won't), visible failures will show at the slightest test, and // the signed shifts can be replaced by the following: // // typedef struct { i64 x:39; } s25; // typedef struct { i64 x:38; } s26; // i64 shift25(i64 x) { s25 s; s.x = ((u64)x)>>25; return s.x; } // i64 shift26(i64 x) { s26 s; s.x = ((u64)x)>>26; return s.x; } // // Current compilers cannot optimise this, causing a 30% drop in // performance. Fairly expensive for something that never happens. // // // Precondition // ------------ // // |t0| < 2^63 // |t1|..|t9| < 2^62 // // Algorithm // --------- // c = t0 + 2^25 / 2^26 -- |c| <= 2^36 // t0 -= c * 2^26 -- |t0| <= 2^25 // t1 += c -- |t1| <= 2^63 // // c = t4 + 2^25 / 2^26 -- |c| <= 2^36 // t4 -= c * 2^26 -- |t4| <= 2^25 // t5 += c -- |t5| <= 2^63 // // c = t1 + 2^24 / 2^25 -- |c| <= 2^38 // t1 -= c * 2^25 -- |t1| <= 2^24 // t2 += c -- |t2| <= 2^63 // // c = t5 + 2^24 / 2^25 -- |c| <= 2^38 // t5 -= c * 2^25 -- |t5| <= 2^24 // t6 += c -- |t6| <= 2^63 // // c = t2 + 2^25 / 2^26 -- |c| <= 2^37 // t2 -= c * 2^26 -- |t2| <= 2^25 < 1.1 * 2^25 (final t2) // t3 += c -- |t3| <= 2^63 // // c = t6 + 2^25 / 2^26 -- |c| <= 2^37 // t6 -= c * 2^26 -- |t6| <= 2^25 < 1.1 * 2^25 (final t6) // t7 += c -- |t7| <= 2^63 // // c = t3 + 2^24 / 2^25 -- |c| <= 2^38 // t3 -= c * 2^25 -- |t3| <= 2^24 < 1.1 * 2^24 (final t3) // t4 += c -- |t4| <= 2^25 + 2^38 < 2^39 // // c = t7 + 2^24 / 2^25 -- |c| <= 2^38 // t7 -= c * 2^25 -- |t7| <= 2^24 < 1.1 * 2^24 (final t7) // t8 += c -- |t8| <= 2^63 // // c = t4 + 2^25 / 2^26 -- |c| <= 2^13 // t4 -= c * 2^26 -- |t4| <= 2^25 < 1.1 * 2^25 (final t4) // t5 += c -- |t5| <= 2^24 + 2^13 < 1.1 * 2^24 (final t5) // // c = t8 + 2^25 / 2^26 -- |c| <= 2^37 // t8 -= c * 2^26 -- |t8| <= 2^25 < 1.1 * 2^25 (final t8) // t9 += c -- |t9| <= 2^63 // // c = t9 + 2^24 / 2^25 -- |c| <= 2^38 // t9 -= c * 2^25 -- |t9| <= 2^24 < 1.1 * 2^24 (final t9) // t0 += c * 19 -- |t0| <= 2^25 + 2^38*19 < 2^44 // // c = t0 + 2^25 / 2^26 -- |c| <= 2^18 // t0 -= c * 2^26 -- |t0| <= 2^25 < 1.1 * 2^25 (final t0) // t1 += c -- |t1| <= 2^24 + 2^18 < 1.1 * 2^24 (final t1) // // Postcondition // ------------- // |t0|, |t2|, |t4|, |t6|, |t8| < 1.1 * 2^25 // |t1|, |t3|, |t5|, |t7|, |t9| < 1.1 * 2^24 #define FE_CARRY \ i64 c; \ c = (t0 + ((i64)1<<25)) >> 26; t0 -= c * ((i64)1 << 26); t1 += c; \ c = (t4 + ((i64)1<<25)) >> 26; t4 -= c * ((i64)1 << 26); t5 += c; \ c = (t1 + ((i64)1<<24)) >> 25; t1 -= c * ((i64)1 << 25); t2 += c; \ c = (t5 + ((i64)1<<24)) >> 25; t5 -= c * ((i64)1 << 25); t6 += c; \ c = (t2 + ((i64)1<<25)) >> 26; t2 -= c * ((i64)1 << 26); t3 += c; \ c = (t6 + ((i64)1<<25)) >> 26; t6 -= c * ((i64)1 << 26); t7 += c; \ c = (t3 + ((i64)1<<24)) >> 25; t3 -= c * ((i64)1 << 25); t4 += c; \ c = (t7 + ((i64)1<<24)) >> 25; t7 -= c * ((i64)1 << 25); t8 += c; \ c = (t4 + ((i64)1<<25)) >> 26; t4 -= c * ((i64)1 << 26); t5 += c; \ c = (t8 + ((i64)1<<25)) >> 26; t8 -= c * ((i64)1 << 26); t9 += c; \ c = (t9 + ((i64)1<<24)) >> 25; t9 -= c * ((i64)1 << 25); t0 += c * 19; \ c = (t0 + ((i64)1<<25)) >> 26; t0 -= c * ((i64)1 << 26); t1 += c; \ h[0]=(i32)t0; h[1]=(i32)t1; h[2]=(i32)t2; h[3]=(i32)t3; h[4]=(i32)t4; \ h[5]=(i32)t5; h[6]=(i32)t6; h[7]=(i32)t7; h[8]=(i32)t8; h[9]=(i32)t9 static void fe_frombytes(fe h, const u8 s[32]) { i64 t0 = load32_le(s); // t0 < 2^32 i64 t1 = load24_le(s + 4) << 6; // t1 < 2^30 i64 t2 = load24_le(s + 7) << 5; // t2 < 2^29 i64 t3 = load24_le(s + 10) << 3; // t3 < 2^27 i64 t4 = load24_le(s + 13) << 2; // t4 < 2^26 i64 t5 = load32_le(s + 16); // t5 < 2^32 i64 t6 = load24_le(s + 20) << 7; // t6 < 2^31 i64 t7 = load24_le(s + 23) << 5; // t7 < 2^29 i64 t8 = load24_le(s + 26) << 4; // t8 < 2^28 i64 t9 = (load24_le(s + 29) & 0x7fffff) << 2; // t9 < 2^25 FE_CARRY; // Carry recondition OK } // Precondition // |h[0]|, |h[2]|, |h[4]|, |h[6]|, |h[8]| < 1.1 * 2^25 // |h[1]|, |h[3]|, |h[5]|, |h[7]|, |h[9]| < 1.1 * 2^24 // // Therefore, |h| < 2^255-19 // There are two possibilities: // // - If h is positive, all we need to do is reduce its individual // limbs down to their tight positive range. // - If h is negative, we also need to add 2^255-19 to it. // Or just remove 19 and chop off any excess bit. static void fe_tobytes(u8 s[32], const fe h) { i32 t[10]; COPY(t, h, 10); i32 q = (19 * t[9] + (((i32) 1) << 24)) >> 25; // |t9| < 1.1 * 2^24 // -1.1 * 2^24 < t9 < 1.1 * 2^24 // -21 * 2^24 < 19 * t9 < 21 * 2^24 // -2^29 < 19 * t9 + 2^24 < 2^29 // -2^29 / 2^25 < (19 * t9 + 2^24) / 2^25 < 2^29 / 2^25 // -16 < (19 * t9 + 2^24) / 2^25 < 16 FOR (i, 0, 5) { q += t[2*i ]; q >>= 26; // q = 0 or -1 q += t[2*i+1]; q >>= 25; // q = 0 or -1 } // q = 0 iff h >= 0 // q = -1 iff h < 0 // Adding q * 19 to h reduces h to its proper range. q *= 19; // Shift carry back to the beginning FOR (i, 0, 5) { t[i*2 ] += q; q = t[i*2 ] >> 26; t[i*2 ] -= q * ((i32)1 << 26); t[i*2+1] += q; q = t[i*2+1] >> 25; t[i*2+1] -= q * ((i32)1 << 25); } // h is now fully reduced, and q represents the excess bit. store32_le(s + 0, ((u32)t[0] >> 0) | ((u32)t[1] << 26)); store32_le(s + 4, ((u32)t[1] >> 6) | ((u32)t[2] << 19)); store32_le(s + 8, ((u32)t[2] >> 13) | ((u32)t[3] << 13)); store32_le(s + 12, ((u32)t[3] >> 19) | ((u32)t[4] << 6)); store32_le(s + 16, ((u32)t[5] >> 0) | ((u32)t[6] << 25)); store32_le(s + 20, ((u32)t[6] >> 7) | ((u32)t[7] << 19)); store32_le(s + 24, ((u32)t[7] >> 13) | ((u32)t[8] << 12)); store32_le(s + 28, ((u32)t[8] >> 20) | ((u32)t[9] << 6)); WIPE_BUFFER(t); } // Precondition // ------------- // |f0|, |f2|, |f4|, |f6|, |f8| < 1.65 * 2^26 // |f1|, |f3|, |f5|, |f7|, |f9| < 1.65 * 2^25 // // |g0|, |g2|, |g4|, |g6|, |g8| < 1.65 * 2^26 // |g1|, |g3|, |g5|, |g7|, |g9| < 1.65 * 2^25 static void fe_mul_small(fe h, const fe f, i32 g) { i64 t0 = f[0] * (i64) g; i64 t1 = f[1] * (i64) g; i64 t2 = f[2] * (i64) g; i64 t3 = f[3] * (i64) g; i64 t4 = f[4] * (i64) g; i64 t5 = f[5] * (i64) g; i64 t6 = f[6] * (i64) g; i64 t7 = f[7] * (i64) g; i64 t8 = f[8] * (i64) g; i64 t9 = f[9] * (i64) g; // |t0|, |t2|, |t4|, |t6|, |t8| < 1.65 * 2^26 * 2^31 < 2^58 // |t1|, |t3|, |t5|, |t7|, |t9| < 1.65 * 2^25 * 2^31 < 2^57 FE_CARRY; // Carry precondition OK } // Precondition // ------------- // |f0|, |f2|, |f4|, |f6|, |f8| < 1.65 * 2^26 // |f1|, |f3|, |f5|, |f7|, |f9| < 1.65 * 2^25 // // |g0|, |g2|, |g4|, |g6|, |g8| < 1.65 * 2^26 // |g1|, |g3|, |g5|, |g7|, |g9| < 1.65 * 2^25 static void fe_mul(fe h, const fe f, const fe g) { // Everything is unrolled and put in temporary variables. // We could roll the loop, but that would make curve25519 twice as slow. i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4]; i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9]; i32 g0 = g[0]; i32 g1 = g[1]; i32 g2 = g[2]; i32 g3 = g[3]; i32 g4 = g[4]; i32 g5 = g[5]; i32 g6 = g[6]; i32 g7 = g[7]; i32 g8 = g[8]; i32 g9 = g[9]; i32 F1 = f1*2; i32 F3 = f3*2; i32 F5 = f5*2; i32 F7 = f7*2; i32 F9 = f9*2; i32 G1 = g1*19; i32 G2 = g2*19; i32 G3 = g3*19; i32 G4 = g4*19; i32 G5 = g5*19; i32 G6 = g6*19; i32 G7 = g7*19; i32 G8 = g8*19; i32 G9 = g9*19; // |F1|, |F3|, |F5|, |F7|, |F9| < 1.65 * 2^26 // |G0|, |G2|, |G4|, |G6|, |G8| < 2^31 // |G1|, |G3|, |G5|, |G7|, |G9| < 2^30 i64 t0 = f0*(i64)g0 + F1*(i64)G9 + f2*(i64)G8 + F3*(i64)G7 + f4*(i64)G6 + F5*(i64)G5 + f6*(i64)G4 + F7*(i64)G3 + f8*(i64)G2 + F9*(i64)G1; i64 t1 = f0*(i64)g1 + f1*(i64)g0 + f2*(i64)G9 + f3*(i64)G8 + f4*(i64)G7 + f5*(i64)G6 + f6*(i64)G5 + f7*(i64)G4 + f8*(i64)G3 + f9*(i64)G2; i64 t2 = f0*(i64)g2 + F1*(i64)g1 + f2*(i64)g0 + F3*(i64)G9 + f4*(i64)G8 + F5*(i64)G7 + f6*(i64)G6 + F7*(i64)G5 + f8*(i64)G4 + F9*(i64)G3; i64 t3 = f0*(i64)g3 + f1*(i64)g2 + f2*(i64)g1 + f3*(i64)g0 + f4*(i64)G9 + f5*(i64)G8 + f6*(i64)G7 + f7*(i64)G6 + f8*(i64)G5 + f9*(i64)G4; i64 t4 = f0*(i64)g4 + F1*(i64)g3 + f2*(i64)g2 + F3*(i64)g1 + f4*(i64)g0 + F5*(i64)G9 + f6*(i64)G8 + F7*(i64)G7 + f8*(i64)G6 + F9*(i64)G5; i64 t5 = f0*(i64)g5 + f1*(i64)g4 + f2*(i64)g3 + f3*(i64)g2 + f4*(i64)g1 + f5*(i64)g0 + f6*(i64)G9 + f7*(i64)G8 + f8*(i64)G7 + f9*(i64)G6; i64 t6 = f0*(i64)g6 + F1*(i64)g5 + f2*(i64)g4 + F3*(i64)g3 + f4*(i64)g2 + F5*(i64)g1 + f6*(i64)g0 + F7*(i64)G9 + f8*(i64)G8 + F9*(i64)G7; i64 t7 = f0*(i64)g7 + f1*(i64)g6 + f2*(i64)g5 + f3*(i64)g4 + f4*(i64)g3 + f5*(i64)g2 + f6*(i64)g1 + f7*(i64)g0 + f8*(i64)G9 + f9*(i64)G8; i64 t8 = f0*(i64)g8 + F1*(i64)g7 + f2*(i64)g6 + F3*(i64)g5 + f4*(i64)g4 + F5*(i64)g3 + f6*(i64)g2 + F7*(i64)g1 + f8*(i64)g0 + F9*(i64)G9; i64 t9 = f0*(i64)g9 + f1*(i64)g8 + f2*(i64)g7 + f3*(i64)g6 + f4*(i64)g5 + f5*(i64)g4 + f6*(i64)g3 + f7*(i64)g2 + f8*(i64)g1 + f9*(i64)g0; // t0 < 0.67 * 2^61 // t1 < 0.41 * 2^61 // t2 < 0.52 * 2^61 // t3 < 0.32 * 2^61 // t4 < 0.38 * 2^61 // t5 < 0.22 * 2^61 // t6 < 0.23 * 2^61 // t7 < 0.13 * 2^61 // t8 < 0.09 * 2^61 // t9 < 0.03 * 2^61 FE_CARRY; // Everything below 2^62, Carry precondition OK } // Precondition // ------------- // |f0|, |f2|, |f4|, |f6|, |f8| < 1.65 * 2^26 // |f1|, |f3|, |f5|, |f7|, |f9| < 1.65 * 2^25 // // Note: we could use fe_mul() for this, but this is significantly faster static void fe_sq(fe h, const fe f) { i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4]; i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9]; i32 f0_2 = f0*2; i32 f1_2 = f1*2; i32 f2_2 = f2*2; i32 f3_2 = f3*2; i32 f4_2 = f4*2; i32 f5_2 = f5*2; i32 f6_2 = f6*2; i32 f7_2 = f7*2; i32 f5_38 = f5*38; i32 f6_19 = f6*19; i32 f7_38 = f7*38; i32 f8_19 = f8*19; i32 f9_38 = f9*38; // |f0_2| , |f2_2| , |f4_2| , |f6_2| , |f8_2| < 1.65 * 2^27 // |f1_2| , |f3_2| , |f5_2| , |f7_2| , |f9_2| < 1.65 * 2^26 // |f5_38|, |f6_19|, |f7_38|, |f8_19|, |f9_38| < 2^31 i64 t0 = f0 *(i64)f0 + f1_2*(i64)f9_38 + f2_2*(i64)f8_19 + f3_2*(i64)f7_38 + f4_2*(i64)f6_19 + f5 *(i64)f5_38; i64 t1 = f0_2*(i64)f1 + f2 *(i64)f9_38 + f3_2*(i64)f8_19 + f4 *(i64)f7_38 + f5_2*(i64)f6_19; i64 t2 = f0_2*(i64)f2 + f1_2*(i64)f1 + f3_2*(i64)f9_38 + f4_2*(i64)f8_19 + f5_2*(i64)f7_38 + f6 *(i64)f6_19; i64 t3 = f0_2*(i64)f3 + f1_2*(i64)f2 + f4 *(i64)f9_38 + f5_2*(i64)f8_19 + f6 *(i64)f7_38; i64 t4 = f0_2*(i64)f4 + f1_2*(i64)f3_2 + f2 *(i64)f2 + f5_2*(i64)f9_38 + f6_2*(i64)f8_19 + f7 *(i64)f7_38; i64 t5 = f0_2*(i64)f5 + f1_2*(i64)f4 + f2_2*(i64)f3 + f6 *(i64)f9_38 + f7_2*(i64)f8_19; i64 t6 = f0_2*(i64)f6 + f1_2*(i64)f5_2 + f2_2*(i64)f4 + f3_2*(i64)f3 + f7_2*(i64)f9_38 + f8 *(i64)f8_19; i64 t7 = f0_2*(i64)f7 + f1_2*(i64)f6 + f2_2*(i64)f5 + f3_2*(i64)f4 + f8 *(i64)f9_38; i64 t8 = f0_2*(i64)f8 + f1_2*(i64)f7_2 + f2_2*(i64)f6 + f3_2*(i64)f5_2 + f4 *(i64)f4 + f9 *(i64)f9_38; i64 t9 = f0_2*(i64)f9 + f1_2*(i64)f8 + f2_2*(i64)f7 + f3_2*(i64)f6 + f4 *(i64)f5_2; // t0 < 0.67 * 2^61 // t1 < 0.41 * 2^61 // t2 < 0.52 * 2^61 // t3 < 0.32 * 2^61 // t4 < 0.38 * 2^61 // t5 < 0.22 * 2^61 // t6 < 0.23 * 2^61 // t7 < 0.13 * 2^61 // t8 < 0.09 * 2^61 // t9 < 0.03 * 2^61 FE_CARRY; } // h = 2 * (f^2) // // Precondition // ------------- // |f0|, |f2|, |f4|, |f6|, |f8| < 1.65 * 2^26 // |f1|, |f3|, |f5|, |f7|, |f9| < 1.65 * 2^25 // // Note: we could implement fe_sq2() by copying fe_sq(), multiplying // each limb by 2, *then* perform the carry. This saves one carry. // However, doing so with the stated preconditions does not work (t2 // would overflow). There are 3 ways to solve this: // // 1. Show that t2 actually never overflows (it really does not). // 2. Accept an additional carry, at a small lost of performance. // 3. Make sure the input of fe_sq2() is freshly carried. // // SUPERCOP ref10 relies on (1). // Monocypher chose (2) and (3), mostly to save code. static void fe_sq2(fe h, const fe f) { fe_sq(h, f); fe_mul_small(h, h, 2); } // This could be simplified, but it would be slower static void fe_pow22523(fe out, const fe z) { fe t0, t1, t2; fe_sq(t0, z); fe_sq(t1,t0); fe_sq(t1, t1); fe_mul(t1, z, t1); fe_mul(t0, t0, t1); fe_sq(t0, t0); fe_mul(t0, t1, t0); fe_sq(t1, t0); FOR (i, 1, 5) fe_sq(t1, t1); fe_mul(t0, t1, t0); fe_sq(t1, t0); FOR (i, 1, 10) fe_sq(t1, t1); fe_mul(t1, t1, t0); fe_sq(t2, t1); FOR (i, 1, 20) fe_sq(t2, t2); fe_mul(t1, t2, t1); fe_sq(t1, t1); FOR (i, 1, 10) fe_sq(t1, t1); fe_mul(t0, t1, t0); fe_sq(t1, t0); FOR (i, 1, 50) fe_sq(t1, t1); fe_mul(t1, t1, t0); fe_sq(t2, t1); FOR (i, 1, 100) fe_sq(t2, t2); fe_mul(t1, t2, t1); fe_sq(t1, t1); FOR (i, 1, 50) fe_sq(t1, t1); fe_mul(t0, t1, t0); fe_sq(t0, t0); FOR (i, 1, 2) fe_sq(t0, t0); fe_mul(out, t0, z); WIPE_BUFFER(t0); WIPE_BUFFER(t1); WIPE_BUFFER(t2); } // Inverting means multiplying by 2^255 - 21 // 2^255 - 21 = (2^252 - 3) * 8 + 3 // So we reuse the multiplication chain of fe_pow22523 static void fe_invert(fe out, const fe z) { fe tmp; fe_pow22523(tmp, z); // tmp2^8 * z^3 fe_sq(tmp, tmp); // 0 fe_sq(tmp, tmp); fe_mul(tmp, tmp, z); // 1 fe_sq(tmp, tmp); fe_mul(out, tmp, z); // 1 WIPE_BUFFER(tmp); } // Parity check. Returns 0 if even, 1 if odd static int fe_isodd(const fe f) { u8 s[32]; fe_tobytes(s, f); u8 isodd = s[0] & 1; WIPE_BUFFER(s); return isodd; } // Returns 1 if equal, 0 if not equal static int fe_isequal(const fe f, const fe g) { u8 fs[32]; u8 gs[32]; fe_tobytes(fs, f); fe_tobytes(gs, g); int isdifferent = crypto_verify32(fs, gs); WIPE_BUFFER(fs); WIPE_BUFFER(gs); return 1 + isdifferent; } // Inverse square root. // Returns true if x is a non zero square, false otherwise. // After the call: // isr = sqrt(1/x) if x is non-zero square. // isr = sqrt(sqrt(-1)/x) if x is not a square. // isr = 0 if x is zero. // We do not guarantee the sign of the square root. // // Notes: // Let quartic = x^((p-1)/4) // // x^((p-1)/2) = chi(x) // quartic^2 = chi(x) // quartic = sqrt(chi(x)) // quartic = 1 or -1 or sqrt(-1) or -sqrt(-1) // // Note that x is a square if quartic is 1 or -1 // There are 4 cases to consider: // // if quartic = 1 (x is a square) // then x^((p-1)/4) = 1 // x^((p-5)/4) * x = 1 // x^((p-5)/4) = 1/x // x^((p-5)/8) = sqrt(1/x) or -sqrt(1/x) // // if quartic = -1 (x is a square) // then x^((p-1)/4) = -1 // x^((p-5)/4) * x = -1 // x^((p-5)/4) = -1/x // x^((p-5)/8) = sqrt(-1) / sqrt(x) // x^((p-5)/8) * sqrt(-1) = sqrt(-1)^2 / sqrt(x) // x^((p-5)/8) * sqrt(-1) = -1/sqrt(x) // x^((p-5)/8) * sqrt(-1) = -sqrt(1/x) or sqrt(1/x) // // if quartic = sqrt(-1) (x is not a square) // then x^((p-1)/4) = sqrt(-1) // x^((p-5)/4) * x = sqrt(-1) // x^((p-5)/4) = sqrt(-1)/x // x^((p-5)/8) = sqrt(sqrt(-1)/x) or -sqrt(sqrt(-1)/x) // // Note that the product of two non-squares is always a square: // For any non-squares a and b, chi(a) = -1 and chi(b) = -1. // Since chi(x) = x^((p-1)/2), chi(a)*chi(b) = chi(a*b) = 1. // Therefore a*b is a square. // // Since sqrt(-1) and x are both non-squares, their product is a // square, and we can compute their square root. // // if quartic = -sqrt(-1) (x is not a square) // then x^((p-1)/4) = -sqrt(-1) // x^((p-5)/4) * x = -sqrt(-1) // x^((p-5)/4) = -sqrt(-1)/x // x^((p-5)/8) = sqrt(-sqrt(-1)/x) // x^((p-5)/8) = sqrt( sqrt(-1)/x) * sqrt(-1) // x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * sqrt(-1)^2 // x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * -1 // x^((p-5)/8) * sqrt(-1) = -sqrt(sqrt(-1)/x) or sqrt(sqrt(-1)/x) static int invsqrt(fe isr, const fe x) { fe check, quartic; fe_copy(check, x); fe_pow22523(isr, check); fe_sq (quartic, isr); fe_mul(quartic, quartic, check); fe_1 (check); int p1 = fe_isequal(quartic, check); fe_neg(check, check ); int m1 = fe_isequal(quartic, check); fe_neg(check, sqrtm1); int ms = fe_isequal(quartic, check); fe_mul(check, isr, sqrtm1); fe_ccopy(isr, check, m1 | ms); WIPE_BUFFER(quartic); WIPE_BUFFER(check); return p1 | m1; } // trim a scalar for scalar multiplication static void trim_scalar(u8 scalar[32]) { scalar[ 0] &= 248; scalar[31] &= 127; scalar[31] |= 64; } // get bit from scalar at position i static int scalar_bit(const u8 s[32], int i) { if (i < 0) { return 0; } // handle -1 for sliding windows return (s[i>>3] >> (i&7)) & 1; } /////////////// /// X-25519 /// Taken from SUPERCOP's ref10 implementation. /////////////// static void scalarmult(u8 q[32], const u8 scalar[32], const u8 p[32], int nb_bits) { // computes the scalar product fe x1; fe_frombytes(x1, p); // computes the actual scalar product (the result is in x2 and z2) fe x2, z2, x3, z3, t0, t1; // Montgomery ladder // In projective coordinates, to avoid divisions: x = X / Z // We don't care about the y coordinate, it's only 1 bit of information fe_1(x2); fe_0(z2); // "zero" point fe_copy(x3, x1); fe_1(z3); // "one" point int swap = 0; for (int pos = nb_bits-1; pos >= 0; --pos) { // constant time conditional swap before ladder step int b = scalar_bit(scalar, pos); swap ^= b; // xor trick avoids swapping at the end of the loop fe_cswap(x2, x3, swap); fe_cswap(z2, z3, swap); swap = b; // anticipates one last swap after the loop // Montgomery ladder step: replaces (P2, P3) by (P2*2, P2+P3) // with differential addition fe_sub(t0, x3, z3); fe_sub(t1, x2, z2); fe_add(x2, x2, z2); fe_add(z2, x3, z3); fe_mul(z3, t0, x2); fe_mul(z2, z2, t1); fe_sq (t0, t1 ); fe_sq (t1, x2 ); fe_add(x3, z3, z2); fe_sub(z2, z3, z2); fe_mul(x2, t1, t0); fe_sub(t1, t1, t0); fe_sq (z2, z2 ); fe_mul_small(z3, t1, 121666); fe_sq (x3, x3 ); fe_add(t0, t0, z3); fe_mul(z3, x1, z2); fe_mul(z2, t1, t0); } // last swap is necessary to compensate for the xor trick // Note: after this swap, P3 == P2 + P1. fe_cswap(x2, x3, swap); fe_cswap(z2, z3, swap); // normalises the coordinates: x == X / Z fe_invert(z2, z2); fe_mul(x2, x2, z2); fe_tobytes(q, x2); WIPE_BUFFER(x1); WIPE_BUFFER(x2); WIPE_BUFFER(z2); WIPE_BUFFER(t0); WIPE_BUFFER(x3); WIPE_BUFFER(z3); WIPE_BUFFER(t1); } void crypto_x25519(u8 raw_shared_secret[32], const u8 your_secret_key [32], const u8 their_public_key [32]) { // restrict the possible scalar values u8 e[32]; COPY(e, your_secret_key, 32); trim_scalar(e); scalarmult(raw_shared_secret, e, their_public_key, 255); WIPE_BUFFER(e); } void crypto_x25519_public_key(u8 public_key[32], const u8 secret_key[32]) { static const u8 base_point[32] = {9}; crypto_x25519(public_key, secret_key, base_point); } /////////////////////////// /// Arithmetic modulo L /// /////////////////////////// static const u32 L[8] = {0x5cf5d3ed, 0x5812631a, 0xa2f79cd6, 0x14def9de, 0x00000000, 0x00000000, 0x00000000, 0x10000000,}; // p = a*b + p static void multiply(u32 p[16], const u32 a[8], const u32 b[8]) { FOR (i, 0, 8) { u64 carry = 0; FOR (j, 0, 8) { carry += p[i+j] + (u64)a[i] * b[j]; p[i+j] = (u32)carry; carry >>= 32; } p[i+8] = (u32)carry; } } static int is_above_l(const u32 x[8]) { // We work with L directly, in a 2's complement encoding // (-L == ~L + 1) u64 carry = 1; FOR (i, 0, 8) { carry += (u64)x[i] + ~L[i]; carry >>= 32; } return carry; } // Final reduction modulo L, by conditionally removing L. // if x < l , then r = x // if l <= x 2*l, then r = x-l // otherwise the result will be wrong static void remove_l(u32 r[8], const u32 x[8]) { u64 carry = is_above_l(x); u32 mask = ~(u32)carry + 1; // carry == 0 or 1 FOR (i, 0, 8) { carry += (u64)x[i] + (~L[i] & mask); r[i] = (u32)carry; carry >>= 32; } } // Full reduction modulo L (Barrett reduction) static void mod_l(u8 reduced[32], const u32 x[16]) { static const u32 r[9] = {0x0a2c131b,0xed9ce5a3,0x086329a7,0x2106215d, 0xffffffeb,0xffffffff,0xffffffff,0xffffffff,0xf,}; // xr = x * r u32 xr[25] = {0}; FOR (i, 0, 9) { u64 carry = 0; FOR (j, 0, 16) { carry += xr[i+j] + (u64)r[i] * x[j]; xr[i+j] = (u32)carry; carry >>= 32; } xr[i+16] = (u32)carry; } // xr = floor(xr / 2^512) * L // Since the result is guaranteed to be below 2*L, // it is enough to only compute the first 256 bits. // The division is performed by saying xr[i+16]. (16 * 32 = 512) ZERO(xr, 8); FOR (i, 0, 8) { u64 carry = 0; FOR (j, 0, 8-i) { carry += xr[i+j] + (u64)xr[i+16] * L[j]; xr[i+j] = (u32)carry; carry >>= 32; } } // xr = x - xr u64 carry = 1; FOR (i, 0, 8) { carry += (u64)x[i] + ~xr[i]; xr[i] = (u32)carry; carry >>= 32; } // Final reduction modulo L (conditional subtraction) remove_l(xr, xr); store32_le_buf(reduced, xr, 8); WIPE_BUFFER(xr); } static void reduce(u8 r[64]) { u32 x[16]; load32_le_buf(x, r, 16); mod_l(r, x); WIPE_BUFFER(x); } // r = (a * b) + c static void mul_add(u8 r[32], const u8 a[32], const u8 b[32], const u8 c[32]) { u32 A[8]; load32_le_buf(A, a, 8); u32 B[8]; load32_le_buf(B, b, 8); u32 p[16]; load32_le_buf(p, c, 8); ZERO(p + 8, 8); multiply(p, A, B); mod_l(r, p); WIPE_BUFFER(p); WIPE_BUFFER(A); WIPE_BUFFER(B); } /////////////// /// Ed25519 /// /////////////// // Point (group element, ge) in a twisted Edwards curve, // in extended projective coordinates. // ge : x = X/Z, y = Y/Z, T = XY/Z // ge_cached : Yp = X+Y, Ym = X-Y, T2 = T*D2 // ge_precomp: Z = 1 typedef struct { fe X; fe Y; fe Z; fe T; } ge; typedef struct { fe Yp; fe Ym; fe Z; fe T2; } ge_cached; typedef struct { fe Yp; fe Ym; fe T2; } ge_precomp; static void ge_zero(ge *p) { fe_0(p->X); fe_1(p->Y); fe_1(p->Z); fe_0(p->T); } static void ge_tobytes(u8 s[32], const ge *h) { fe recip, x, y; fe_invert(recip, h->Z); fe_mul(x, h->X, recip); fe_mul(y, h->Y, recip); fe_tobytes(s, y); s[31] ^= fe_isodd(x) << 7; WIPE_BUFFER(recip); WIPE_BUFFER(x); WIPE_BUFFER(y); } // h = s, where s is a point encoded in 32 bytes // // Variable time! Inputs must not be secret! // => Use only to *check* signatures. // // From the specifications: // The encoding of s contains y and the sign of x // x = sqrt((y^2 - 1) / (d*y^2 + 1)) // In extended coordinates: // X = x, Y = y, Z = 1, T = x*y // // Note that num * den is a square iff num / den is a square // If num * den is not a square, the point was not on the curve. // From the above: // Let num = y^2 - 1 // Let den = d*y^2 + 1 // x = sqrt((y^2 - 1) / (d*y^2 + 1)) // x = sqrt(num / den) // x = sqrt(num^2 / (num * den)) // x = num * sqrt(1 / (num * den)) // // Therefore, we can just compute: // num = y^2 - 1 // den = d*y^2 + 1 // isr = invsqrt(num * den) // abort if not square // x = num * isr // Finally, negate x if its sign is not as specified. static int ge_frombytes_vartime(ge *h, const u8 s[32]) { fe_frombytes(h->Y, s); fe_1(h->Z); fe_sq (h->T, h->Y); // t = y^2 fe_mul(h->X, h->T, d ); // x = d*y^2 fe_sub(h->T, h->T, h->Z); // t = y^2 - 1 fe_add(h->X, h->X, h->Z); // x = d*y^2 + 1 fe_mul(h->X, h->T, h->X); // x = (y^2 - 1) * (d*y^2 + 1) int is_square = invsqrt(h->X, h->X); if (!is_square) { return -1; // Not on the curve, abort } fe_mul(h->X, h->T, h->X); // x = sqrt((y^2 - 1) / (d*y^2 + 1)) if (fe_isodd(h->X) != (s[31] >> 7)) { fe_neg(h->X, h->X); } fe_mul(h->T, h->X, h->Y); return 0; } static void ge_cache(ge_cached *c, const ge *p) { fe_add (c->Yp, p->Y, p->X); fe_sub (c->Ym, p->Y, p->X); fe_copy(c->Z , p->Z ); fe_mul (c->T2, p->T, D2 ); } // Internal buffers are not wiped! Inputs must not be secret! // => Use only to *check* signatures. static void ge_add(ge *s, const ge *p, const ge_cached *q) { fe a, b; fe_add(a , p->Y, p->X ); fe_sub(b , p->Y, p->X ); fe_mul(a , a , q->Yp); fe_mul(b , b , q->Ym); fe_add(s->Y, a , b ); fe_sub(s->X, a , b ); fe_add(s->Z, p->Z, p->Z ); fe_mul(s->Z, s->Z, q->Z ); fe_mul(s->T, p->T, q->T2); fe_add(a , s->Z, s->T ); fe_sub(b , s->Z, s->T ); fe_mul(s->T, s->X, s->Y); fe_mul(s->X, s->X, b ); fe_mul(s->Y, s->Y, a ); fe_mul(s->Z, a , b ); } // Internal buffers are not wiped! Inputs must not be secret! // => Use only to *check* signatures. static void ge_sub(ge *s, const ge *p, const ge_cached *q) { ge_cached neg; fe_copy(neg.Ym, q->Yp); fe_copy(neg.Yp, q->Ym); fe_copy(neg.Z , q->Z ); fe_neg (neg.T2, q->T2); ge_add(s, p, &neg); } static void ge_madd(ge *s, const ge *p, const ge_precomp *q, fe a, fe b) { fe_add(a , p->Y, p->X ); fe_sub(b , p->Y, p->X ); fe_mul(a , a , q->Yp); fe_mul(b , b , q->Ym); fe_add(s->Y, a , b ); fe_sub(s->X, a , b ); fe_add(s->Z, p->Z, p->Z ); fe_mul(s->T, p->T, q->T2); fe_add(a , s->Z, s->T ); fe_sub(b , s->Z, s->T ); fe_mul(s->T, s->X, s->Y); fe_mul(s->X, s->X, b ); fe_mul(s->Y, s->Y, a ); fe_mul(s->Z, a , b ); } static void ge_msub(ge *s, const ge *p, const ge_precomp *q, fe a, fe b) { fe_add(a , p->Y, p->X ); fe_sub(b , p->Y, p->X ); fe_mul(a , a , q->Ym); fe_mul(b , b , q->Yp); fe_add(s->Y, a , b ); fe_sub(s->X, a , b ); fe_add(s->Z, p->Z, p->Z ); fe_mul(s->T, p->T, q->T2); fe_sub(a , s->Z, s->T ); fe_add(b , s->Z, s->T ); fe_mul(s->T, s->X, s->Y); fe_mul(s->X, s->X, b ); fe_mul(s->Y, s->Y, a ); fe_mul(s->Z, a , b ); } static void ge_double(ge *s, const ge *p, ge *q) { fe_sq (q->X, p->X); fe_sq (q->Y, p->Y); fe_sq2(q->Z, p->Z); fe_add(q->T, p->X, p->Y); fe_sq (s->T, q->T); fe_add(q->T, q->Y, q->X); fe_sub(q->Y, q->Y, q->X); fe_sub(q->X, s->T, q->T); fe_sub(q->Z, q->Z, q->Y); fe_mul(s->X, q->X , q->Z); fe_mul(s->Y, q->T , q->Y); fe_mul(s->Z, q->Y , q->Z); fe_mul(s->T, q->X , q->T); } // 5-bit signed window in cached format (Niels coordinates, Z=1) static const ge_precomp b_window[8] = { {{25967493,-14356035,29566456,3660896,-12694345, 4014787,27544626,-11754271,-6079156,2047605,}, {-12545711,934262,-2722910,3049990,-727428, 9406986,12720692,5043384,19500929,-15469378,}, {-8738181,4489570,9688441,-14785194,10184609, -12363380,29287919,11864899,-24514362,-4438546,},}, {{15636291,-9688557,24204773,-7912398,616977, -16685262,27787600,-14772189,28944400,-1550024,}, {16568933,4717097,-11556148,-1102322,15682896, -11807043,16354577,-11775962,7689662,11199574,}, {30464156,-5976125,-11779434,-15670865,23220365, 15915852,7512774,10017326,-17749093,-9920357,},}, {{10861363,11473154,27284546,1981175,-30064349, 12577861,32867885,14515107,-15438304,10819380,}, {4708026,6336745,20377586,9066809,-11272109, 6594696,-25653668,12483688,-12668491,5581306,}, {19563160,16186464,-29386857,4097519,10237984, -4348115,28542350,13850243,-23678021,-15815942,},}, {{5153746,9909285,1723747,-2777874,30523605, 5516873,19480852,5230134,-23952439,-15175766,}, {-30269007,-3463509,7665486,10083793,28475525, 1649722,20654025,16520125,30598449,7715701,}, {28881845,14381568,9657904,3680757,-20181635, 7843316,-31400660,1370708,29794553,-1409300,},}, {{-22518993,-6692182,14201702,-8745502,-23510406, 8844726,18474211,-1361450,-13062696,13821877,}, {-6455177,-7839871,3374702,-4740862,-27098617, -10571707,31655028,-7212327,18853322,-14220951,}, {4566830,-12963868,-28974889,-12240689,-7602672, -2830569,-8514358,-10431137,2207753,-3209784,},}, {{-25154831,-4185821,29681144,7868801,-6854661, -9423865,-12437364,-663000,-31111463,-16132436,}, {25576264,-2703214,7349804,-11814844,16472782, 9300885,3844789,15725684,171356,6466918,}, {23103977,13316479,9739013,-16149481,817875, -15038942,8965339,-14088058,-30714912,16193877,},}, {{-33521811,3180713,-2394130,14003687,-16903474, -16270840,17238398,4729455,-18074513,9256800,}, {-25182317,-4174131,32336398,5036987,-21236817, 11360617,22616405,9761698,-19827198,630305,}, {-13720693,2639453,-24237460,-7406481,9494427, -5774029,-6554551,-15960994,-2449256,-14291300,},}, {{-3151181,-5046075,9282714,6866145,-31907062, -863023,-18940575,15033784,25105118,-7894876,}, {-24326370,15950226,-31801215,-14592823,-11662737, -5090925,1573892,-2625887,2198790,-15804619,}, {-3099351,10324967,-2241613,7453183,-5446979, -2735503,-13812022,-16236442,-32461234,-12290683,},}, }; // Incremental sliding windows (left to right) // Based on Roberto Maria Avanzi[2005] typedef struct { i16 next_index; // position of the next signed digit i8 next_digit; // next signed digit (odd number below 2^window_width) u8 next_check; // point at which we must check for a new window } slide_ctx; static void slide_init(slide_ctx *ctx, const u8 scalar[32]) { // scalar is guaranteed to be below L, either because we checked (s), // or because we reduced it modulo L (h_ram). L is under 2^253, so // so bits 253 to 255 are guaranteed to be zero. No need to test them. // // Note however that L is very close to 2^252, so bit 252 is almost // always zero. If we were to start at bit 251, the tests wouldn't // catch the off-by-one error (constructing one that does would be // prohibitively expensive). // // We should still check bit 252, though. int i = 252; while (i > 0 && scalar_bit(scalar, i) == 0) { i--; } ctx->next_check = (u8)(i + 1); ctx->next_index = -1; ctx->next_digit = -1; } static int slide_step(slide_ctx *ctx, int width, int i, const u8 scalar[32]) { if (i == ctx->next_check) { if (scalar_bit(scalar, i) == scalar_bit(scalar, i - 1)) { ctx->next_check--; } else { // compute digit of next window int w = MIN(width, i + 1); int v = -(scalar_bit(scalar, i) << (w-1)); FOR_T (int, j, 0, w-1) { v += scalar_bit(scalar, i-(w-1)+j) << j; } v += scalar_bit(scalar, i-w); int lsb = v & (~v + 1); // smallest bit of v int s = ( ((lsb & 0xAA) != 0) // log2(lsb) | (((lsb & 0xCC) != 0) << 1) | (((lsb & 0xF0) != 0) << 2)); ctx->next_index = (i16)(i-(w-1)+s); ctx->next_digit = (i8) (v >> s ); ctx->next_check -= (u8) w; } } return i == ctx->next_index ? ctx->next_digit: 0; } #define P_W_WIDTH 3 // Affects the size of the stack #define B_W_WIDTH 5 // Affects the size of the binary #define P_W_SIZE (1<<(P_W_WIDTH-2)) // P = [b]B + [p]P, where B is the base point // // Variable time! Internal buffers are not wiped! Inputs must not be secret! // => Use only to *check* signatures. static void ge_double_scalarmult_vartime(ge *P, const u8 p[32], const u8 b[32]) { // cache P window for addition ge_cached cP[P_W_SIZE]; { ge P2, tmp; ge_double(&P2, P, &tmp); ge_cache(&cP[0], P); FOR (i, 1, P_W_SIZE) { ge_add(&tmp, &P2, &cP[i-1]); ge_cache(&cP[i], &tmp); } } // Merged double and add ladder, fused with sliding slide_ctx p_slide; slide_init(&p_slide, p); slide_ctx b_slide; slide_init(&b_slide, b); int i = MAX(p_slide.next_check, b_slide.next_check); ge *sum = P; ge_zero(sum); while (i >= 0) { ge tmp; ge_double(sum, sum, &tmp); int p_digit = slide_step(&p_slide, P_W_WIDTH, i, p); int b_digit = slide_step(&b_slide, B_W_WIDTH, i, b); if (p_digit > 0) { ge_add(sum, sum, &cP[ p_digit / 2]); } if (p_digit < 0) { ge_sub(sum, sum, &cP[-p_digit / 2]); } fe t1, t2; if (b_digit > 0) { ge_madd(sum, sum, b_window + b_digit/2, t1, t2); } if (b_digit < 0) { ge_msub(sum, sum, b_window + -b_digit/2, t1, t2); } i--; } } // R_check = s[B] - h_ram[pk], where B is the base point // // Variable time! Internal buffers are not wiped! Inputs must not be secret! // => Use only to *check* signatures. static int ge_r_check(u8 R_check[32], u8 s[32], u8 h_ram[32], u8 pk[32]) { ge A; // not secret, not wiped u32 s32[8]; // not secret, not wiped load32_le_buf(s32, s, 8); if (ge_frombytes_vartime(&A, pk) || // A = pk is_above_l(s32)) { // prevent s malleability return -1; } fe_neg(A.X, A.X); fe_neg(A.T, A.T); // A = -pk ge_double_scalarmult_vartime(&A, h_ram, s); // A = [s]B - [h_ram]pk ge_tobytes(R_check, &A); // R_check = A return 0; } // 5-bit signed comb in cached format (Niels coordinates, Z=1) static const ge_precomp b_comb_low[8] = { {{-6816601,-2324159,-22559413,124364,18015490, 8373481,19993724,1979872,-18549925,9085059,}, {10306321,403248,14839893,9633706,8463310, -8354981,-14305673,14668847,26301366,2818560,}, {-22701500,-3210264,-13831292,-2927732,-16326337, -14016360,12940910,177905,12165515,-2397893,},}, {{-12282262,-7022066,9920413,-3064358,-32147467, 2927790,22392436,-14852487,2719975,16402117,}, {-7236961,-4729776,2685954,-6525055,-24242706, -15940211,-6238521,14082855,10047669,12228189,}, {-30495588,-12893761,-11161261,3539405,-11502464, 16491580,-27286798,-15030530,-7272871,-15934455,},}, {{17650926,582297,-860412,-187745,-12072900, -10683391,-20352381,15557840,-31072141,-5019061,}, {-6283632,-2259834,-4674247,-4598977,-4089240, 12435688,-31278303,1060251,6256175,10480726,}, {-13871026,2026300,-21928428,-2741605,-2406664, -8034988,7355518,15733500,-23379862,7489131,},}, {{6883359,695140,23196907,9644202,-33430614, 11354760,-20134606,6388313,-8263585,-8491918,}, {-7716174,-13605463,-13646110,14757414,-19430591, -14967316,10359532,-11059670,-21935259,12082603,}, {-11253345,-15943946,10046784,5414629,24840771, 8086951,-6694742,9868723,15842692,-16224787,},}, {{9639399,11810955,-24007778,-9320054,3912937, -9856959,996125,-8727907,-8919186,-14097242,}, {7248867,14468564,25228636,-8795035,14346339, 8224790,6388427,-7181107,6468218,-8720783,}, {15513115,15439095,7342322,-10157390,18005294, -7265713,2186239,4884640,10826567,7135781,},}, {{-14204238,5297536,-5862318,-6004934,28095835, 4236101,-14203318,1958636,-16816875,3837147,}, {-5511166,-13176782,-29588215,12339465,15325758, -15945770,-8813185,11075932,-19608050,-3776283,}, {11728032,9603156,-4637821,-5304487,-7827751, 2724948,31236191,-16760175,-7268616,14799772,},}, {{-28842672,4840636,-12047946,-9101456,-1445464, 381905,-30977094,-16523389,1290540,12798615,}, {27246947,-10320914,14792098,-14518944,5302070, -8746152,-3403974,-4149637,-27061213,10749585,}, {25572375,-6270368,-15353037,16037944,1146292, 32198,23487090,9585613,24714571,-1418265,},}, {{19844825,282124,-17583147,11004019,-32004269, -2716035,6105106,-1711007,-21010044,14338445,}, {8027505,8191102,-18504907,-12335737,25173494, -5923905,15446145,7483684,-30440441,10009108,}, {-14134701,-4174411,10246585,-14677495,33553567, -14012935,23366126,15080531,-7969992,7663473,},}, }; static const ge_precomp b_comb_high[8] = { {{33055887,-4431773,-521787,6654165,951411, -6266464,-5158124,6995613,-5397442,-6985227,}, {4014062,6967095,-11977872,3960002,8001989, 5130302,-2154812,-1899602,-31954493,-16173976,}, {16271757,-9212948,23792794,731486,-25808309, -3546396,6964344,-4767590,10976593,10050757,},}, {{2533007,-4288439,-24467768,-12387405,-13450051, 14542280,12876301,13893535,15067764,8594792,}, {20073501,-11623621,3165391,-13119866,13188608, -11540496,-10751437,-13482671,29588810,2197295,}, {-1084082,11831693,6031797,14062724,14748428, -8159962,-20721760,11742548,31368706,13161200,},}, {{2050412,-6457589,15321215,5273360,25484180, 124590,-18187548,-7097255,-6691621,-14604792,}, {9938196,2162889,-6158074,-1711248,4278932, -2598531,-22865792,-7168500,-24323168,11746309,}, {-22691768,-14268164,5965485,9383325,20443693, 5854192,28250679,-1381811,-10837134,13717818,},}, {{-8495530,16382250,9548884,-4971523,-4491811, -3902147,6182256,-12832479,26628081,10395408,}, {27329048,-15853735,7715764,8717446,-9215518, -14633480,28982250,-5668414,4227628,242148,}, {-13279943,-7986904,-7100016,8764468,-27276630, 3096719,29678419,-9141299,3906709,11265498,},}, {{11918285,15686328,-17757323,-11217300,-27548967, 4853165,-27168827,6807359,6871949,-1075745,}, {-29002610,13984323,-27111812,-2713442,28107359, -13266203,6155126,15104658,3538727,-7513788,}, {14103158,11233913,-33165269,9279850,31014152, 4335090,-1827936,4590951,13960841,12787712,},}, {{1469134,-16738009,33411928,13942824,8092558, -8778224,-11165065,1437842,22521552,-2792954,}, {31352705,-4807352,-25327300,3962447,12541566, -9399651,-27425693,7964818,-23829869,5541287,}, {-25732021,-6864887,23848984,3039395,-9147354, 6022816,-27421653,10590137,25309915,-1584678,},}, {{-22951376,5048948,31139401,-190316,-19542447, -626310,-17486305,-16511925,-18851313,-12985140,}, {-9684890,14681754,30487568,7717771,-10829709, 9630497,30290549,-10531496,-27798994,-13812825,}, {5827835,16097107,-24501327,12094619,7413972, 11447087,28057551,-1793987,-14056981,4359312,},}, {{26323183,2342588,-21887793,-1623758,-6062284, 2107090,-28724907,9036464,-19618351,-13055189,}, {-29697200,14829398,-4596333,14220089,-30022969, 2955645,12094100,-13693652,-5941445,7047569,}, {-3201977,14413268,-12058324,-16417589,-9035655, -7224648,9258160,1399236,30397584,-5684634,},}, }; static void lookup_add(ge *p, ge_precomp *tmp_c, fe tmp_a, fe tmp_b, const ge_precomp comb[8], const u8 scalar[32], int i) { u8 teeth = (u8)((scalar_bit(scalar, i) ) + (scalar_bit(scalar, i + 32) << 1) + (scalar_bit(scalar, i + 64) << 2) + (scalar_bit(scalar, i + 96) << 3)); u8 high = teeth >> 3; u8 index = (teeth ^ (high - 1)) & 7; FOR (j, 0, 8) { i32 select = 1 & (((j ^ index) - 1) >> 8); fe_ccopy(tmp_c->Yp, comb[j].Yp, select); fe_ccopy(tmp_c->Ym, comb[j].Ym, select); fe_ccopy(tmp_c->T2, comb[j].T2, select); } fe_neg(tmp_a, tmp_c->T2); fe_cswap(tmp_c->T2, tmp_a , high ^ 1); fe_cswap(tmp_c->Yp, tmp_c->Ym, high ^ 1); ge_madd(p, p, tmp_c, tmp_a, tmp_b); } // p = [scalar]B, where B is the base point static void ge_scalarmult_base(ge *p, const u8 scalar[32]) { // twin 4-bits signed combs, from Mike Hamburg's // Fast and compact elliptic-curve cryptography (2012) // 1 / 2 modulo L static const u8 half_mod_L[32] = { 247,233,122,46,141,49,9,44,107,206,123,81,239,124,111,10, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8, }; // (2^256 - 1) / 2 modulo L static const u8 half_ones[32] = { 142,74,204,70,186,24,118,107,184,231,190,57,250,173,119,99, 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,7, }; // All bits set form: 1 means 1, 0 means -1 u8 s_scalar[32]; mul_add(s_scalar, scalar, half_mod_L, half_ones); // Double and add ladder fe tmp_a, tmp_b; // temporaries for addition ge_precomp tmp_c; // temporary for comb lookup ge tmp_d; // temporary for doubling fe_1(tmp_c.Yp); fe_1(tmp_c.Ym); fe_0(tmp_c.T2); // Save a double on the first iteration ge_zero(p); lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_low , s_scalar, 31); lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_high, s_scalar, 31+128); // Regular double & add for the rest for (int i = 30; i >= 0; i--) { ge_double(p, p, &tmp_d); lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_low , s_scalar, i); lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_high, s_scalar, i+128); } // Note: we could save one addition at the end if we assumed the // scalar fit in 252 bit. Which it does in practice if it is // selected at random. However, non-random, non-hashed scalars // *can* overflow 252 bits in practice. Better account for that // than leaving that kind of subtle corner case. WIPE_BUFFER(tmp_a); WIPE_CTX(&tmp_d); WIPE_BUFFER(tmp_b); WIPE_CTX(&tmp_c); WIPE_BUFFER(s_scalar); } void crypto_sign_public_key_custom_hash(u8 public_key[32], const u8 secret_key[32], const crypto_sign_vtable *hash) { u8 a[64]; hash->hash(a, secret_key, 32); trim_scalar(a); ge A; ge_scalarmult_base(&A, a); ge_tobytes(public_key, &A); WIPE_BUFFER(a); WIPE_CTX(&A); } void crypto_sign_public_key(u8 public_key[32], const u8 secret_key[32]) { crypto_sign_public_key_custom_hash(public_key, secret_key, &crypto_blake2b_vtable); } void crypto_sign_init_first_pass_custom_hash(crypto_sign_ctx_abstract *ctx, const u8 secret_key[32], const u8 public_key[32], const crypto_sign_vtable *hash) { ctx->hash = hash; // set vtable u8 *a = ctx->buf; u8 *prefix = ctx->buf + 32; ctx->hash->hash(a, secret_key, 32); trim_scalar(a); if (public_key == 0) { crypto_sign_public_key_custom_hash(ctx->pk, secret_key, ctx->hash); } else { COPY(ctx->pk, public_key, 32); } // Deterministic part of EdDSA: Construct a nonce by hashing the message // instead of generating a random number. // An actual random number would work just fine, and would save us // the trouble of hashing the message twice. If we did that // however, the user could fuck it up and reuse the nonce. ctx->hash->init (ctx); ctx->hash->update(ctx, prefix , 32); } void crypto_sign_init_first_pass(crypto_sign_ctx_abstract *ctx, const u8 secret_key[32], const u8 public_key[32]) { crypto_sign_init_first_pass_custom_hash(ctx, secret_key, public_key, &crypto_blake2b_vtable); } void crypto_sign_update(crypto_sign_ctx_abstract *ctx, const u8 *msg, size_t msg_size) { ctx->hash->update(ctx, msg, msg_size); } void crypto_sign_init_second_pass(crypto_sign_ctx_abstract *ctx) { u8 *r = ctx->buf + 32; u8 *half_sig = ctx->buf + 64; ctx->hash->final(ctx, r); reduce(r); // first half of the signature = "random" nonce times the base point ge R; ge_scalarmult_base(&R, r); ge_tobytes(half_sig, &R); WIPE_CTX(&R); // Hash R, the public key, and the message together. // It cannot be done in parallel with the first hash. ctx->hash->init (ctx); ctx->hash->update(ctx, half_sig, 32); ctx->hash->update(ctx, ctx->pk , 32); } void crypto_sign_final(crypto_sign_ctx_abstract *ctx, u8 signature[64]) { u8 *a = ctx->buf; u8 *r = ctx->buf + 32; u8 *half_sig = ctx->buf + 64; u8 h_ram[64]; ctx->hash->final(ctx, h_ram); reduce(h_ram); COPY(signature, half_sig, 32); mul_add(signature + 32, h_ram, a, r); // s = h_ram * a + r WIPE_BUFFER(h_ram); crypto_wipe(ctx, ctx->hash->ctx_size); } void crypto_sign(u8 signature[64], const u8 secret_key[32], const u8 public_key[32], const u8 *message, size_t message_size) { crypto_sign_ctx ctx; crypto_sign_ctx_abstract *actx = (crypto_sign_ctx_abstract*)&ctx; crypto_sign_init_first_pass (actx, secret_key, public_key); crypto_sign_update (actx, message, message_size); crypto_sign_init_second_pass(actx); crypto_sign_update (actx, message, message_size); crypto_sign_final (actx, signature); } void crypto_check_init_custom_hash(crypto_check_ctx_abstract *ctx, const u8 signature[64], const u8 public_key[32], const crypto_sign_vtable *hash) { ctx->hash = hash; // set vtable COPY(ctx->buf, signature , 64); COPY(ctx->pk , public_key, 32); ctx->hash->init (ctx); ctx->hash->update(ctx, signature , 32); ctx->hash->update(ctx, public_key, 32); } void crypto_check_init(crypto_check_ctx_abstract *ctx, const u8 signature[64], const u8 public_key[32]) { crypto_check_init_custom_hash(ctx, signature, public_key, &crypto_blake2b_vtable); } void crypto_check_update(crypto_check_ctx_abstract *ctx, const u8 *msg, size_t msg_size) { ctx->hash->update(ctx, msg, msg_size); } int crypto_check_final(crypto_check_ctx_abstract *ctx) { u8 h_ram[64]; ctx->hash->final(ctx, h_ram); reduce(h_ram); u8 *R = ctx->buf; // R u8 *s = ctx->buf + 32; // s u8 *R_check = ctx->pk; // overwrite ctx->pk to save stack space if (ge_r_check(R_check, s, h_ram, ctx->pk)) { return -1; } return crypto_verify32(R, R_check); // R == R_check ? OK : fail } int crypto_check(const u8 signature[64], const u8 public_key[32], const u8 *message, size_t message_size) { crypto_check_ctx ctx; crypto_check_ctx_abstract *actx = (crypto_check_ctx_abstract*)&ctx; crypto_check_init (actx, signature, public_key); crypto_check_update(actx, message, message_size); return crypto_check_final(actx); } /////////////////////// /// EdDSA to X25519 /// /////////////////////// void crypto_from_eddsa_private(u8 x25519[32], const u8 eddsa[32]) { u8 a[64]; crypto_blake2b(a, eddsa, 32); COPY(x25519, a, 32); WIPE_BUFFER(a); } void crypto_from_eddsa_public(u8 x25519[32], const u8 eddsa[32]) { fe t1, t2; fe_frombytes(t2, eddsa); fe_add(t1, fe_one, t2); fe_sub(t2, fe_one, t2); fe_invert(t2, t2); fe_mul(t1, t1, t2); fe_tobytes(x25519, t1); WIPE_BUFFER(t1); WIPE_BUFFER(t2); } ///////////////////////////////////////////// /// Dirty ephemeral public key generation /// ///////////////////////////////////////////// // Those functions generates a public key, *without* clearing the // cofactor. Sending that key over the network leaks 3 bits of the // private key. Use only to generate ephemeral keys that will be hidden // with crypto_curve_to_hidden(). // // The public key is otherwise compatible with crypto_x25519() and // crypto_key_exchange() (those properly clear the cofactor). // // Note that the distribution of the resulting public keys is almost // uniform. Flipping the sign of the v coordinate (not provided by this // function), covers the entire key space almost perfectly, where // "almost" means a 2^-128 bias (undetectable). This uniformity is // needed to ensure the proper randomness of the resulting // representatives (once we apply crypto_curve_to_hidden()). // // Recall that Curve25519 has order C = 2^255 + e, with e < 2^128 (not // to be confused with the prime order of the main subgroup, L, which is // 8 times less than that). // // Generating all points would require us to multiply a point of order C // (the base point plus any point of order 8) by all scalars from 0 to // C-1. Clamping limits us to scalars between 2^254 and 2^255 - 1. But // by negating the resulting point at random, we also cover scalars from // -2^255 + 1 to -2^254 (which modulo C is congruent to e+1 to 2^254 + e). // // In practice: // - Scalars from 0 to e + 1 are never generated // - Scalars from 2^255 to 2^255 + e are never generated // - Scalars from 2^254 + 1 to 2^254 + e are generated twice // // Since e < 2^128, detecting this bias requires observing over 2^100 // representatives from a given source (this will never happen), *and* // recovering enough of the private key to determine that they do, or do // not, belong to the biased set (this practically requires solving // discrete logarithm, which is conjecturally intractable). // // In practice, this means the bias is impossible to detect. // s + (x*L) % 8*L // Guaranteed to fit in 256 bits iff s fits in 255 bits. // L < 2^253 // x%8 < 2^3 // L * (x%8) < 2^255 // s < 2^255 // s + L * (x%8) < 2^256 static void add_xl(u8 s[32], u8 x) { u64 mod8 = x & 7; u64 carry = 0; FOR (i , 0, 8) { carry = carry + load32_le(s + 4*i) + L[i] * mod8; store32_le(s + 4*i, (u32)carry); carry >>= 32; } } // "Small" dirty ephemeral key. // Use if you need to shrink the size of the binary, and can afford to // slow down by a factor of two (compared to the fast version) // // This version works by decoupling the cofactor from the main factor. // // - The trimmed scalar determines the main factor // - The clamped bits of the scalar determine the cofactor. // // Cofactor and main factor are combined into a single scalar, which is // then multiplied by a point of order 8*L (unlike the base point, which // has prime order). That "dirty" base point is the addition of the // regular base point (9), and a point of order 8. void crypto_x25519_dirty_small(u8 public_key[32], const u8 secret_key[32]) { // Base point of order 8*L // Raw scalar multiplication with it does not clear the cofactor, // and the resulting public key will reveal 3 bits of the scalar. static const u8 dirty_base_point[32] = { 0x34, 0xfc, 0x6c, 0xb7, 0xc8, 0xde, 0x58, 0x97, 0x77, 0x70, 0xd9, 0x52, 0x16, 0xcc, 0xdc, 0x6c, 0x85, 0x90, 0xbe, 0xcd, 0x91, 0x9c, 0x07, 0x59, 0x94, 0x14, 0x56, 0x3b, 0x4b, 0xa4, 0x47, 0x0f, }; // separate the main factor & the cofactor of the scalar u8 scalar[32]; COPY(scalar, secret_key, 32); trim_scalar(scalar); // Separate the main factor and the cofactor // // The scalar is trimmed, so its cofactor is cleared. The three // least significant bits however still have a main factor. We must // remove it for X25519 compatibility. // // We exploit the fact that 5*L = 1 (modulo 8) // cofactor = lsb * 5 * L (modulo 8*L) // combined = scalar + cofactor (modulo 8*L) // combined = scalar + (lsb * 5 * L) (modulo 8*L) add_xl(scalar, secret_key[0] * 5); scalarmult(public_key, scalar, dirty_base_point, 256); WIPE_BUFFER(scalar); } // "Fast" dirty ephemeral key // We use this one by default. // // This version works by performing a regular scalar multiplication, // then add a low order point. The scalar multiplication is done in // Edwards space for more speed (*2 compared to the "small" version). // The cost is a bigger binary for programs that don't also sign messages. void crypto_x25519_dirty_fast(u8 public_key[32], const u8 secret_key[32]) { u8 scalar[32]; ge pk; COPY(scalar, secret_key, 32); trim_scalar(scalar); ge_scalarmult_base(&pk, scalar); // Select low order point // We're computing the [cofactor]lop scalar multiplication, where: // cofactor = tweak & 7. // lop = (lop_x, lop_y) // lop_x = sqrt((sqrt(d + 1) + 1) / d) // lop_y = -lop_x * sqrtm1 // Notes: // - A (single) Montgomery ladder would be twice as slow. // - An actual scalar multiplication would hurt performance. // - A full table lookup would take more code. u8 cofactor = secret_key[0] & 7; int a = (cofactor >> 2) & 1; int b = (cofactor >> 1) & 1; int c = (cofactor >> 0) & 1; fe t1, t2, t3; fe_0(t1); fe_ccopy(t1, sqrtm1, b); fe_ccopy(t1, lop_x , c); fe_neg (t3, t1); fe_ccopy(t1, t3, a); fe_1(t2); fe_0(t3); fe_ccopy(t2, t3 , b); fe_ccopy(t2, lop_y, c); fe_neg (t3, t2); fe_ccopy(t2, t3, a^b); ge_precomp low_order_point; fe_add(low_order_point.Yp, t2, t1); fe_sub(low_order_point.Ym, t2, t1); fe_mul(low_order_point.T2, t2, t1); fe_mul(low_order_point.T2, low_order_point.T2, D2); // Add low order point to the public key ge_madd(&pk, &pk, &low_order_point, t1, t2); // Convert to Montgomery u coordinate (we ignore the sign) fe_add(t1, pk.Z, pk.Y); fe_sub(t2, pk.Z, pk.Y); fe_invert(t2, t2); fe_mul(t1, t1, t2); fe_tobytes(public_key, t1); WIPE_BUFFER(t1); WIPE_BUFFER(scalar); WIPE_BUFFER(t2); WIPE_CTX(&pk); WIPE_BUFFER(t3); WIPE_CTX(&low_order_point); } /////////////////// /// Elligator 2 /// /////////////////// static const fe A = {486662}; // Elligator direct map // // Computes the point corresponding to a representative, encoded in 32 // bytes (little Endian). Since positive representatives fits in 254 // bits, The two most significant bits are ignored. // // From the paper: // w = -A / (fe(1) + non_square * r^2) // e = chi(w^3 + A*w^2 + w) // u = e*w - (fe(1)-e)*(A//2) // v = -e * sqrt(u^3 + A*u^2 + u) // // We ignore v because we don't need it for X25519 (the Montgomery // ladder only uses u). // // Note that e is either 0, 1 or -1 // if e = 0 u = 0 and v = 0 // if e = 1 u = w // if e = -1 u = -w - A = w * non_square * r^2 // // Let r1 = non_square * r^2 // Let r2 = 1 + r1 // Note that r2 cannot be zero, -1/non_square is not a square. // We can (tediously) verify that: // w^3 + A*w^2 + w = (A^2*r1 - r2^2) * A / r2^3 // Therefore: // chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) // chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * 1 // chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * chi(r2^6) // chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3) * r2^6) // chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * A * r2^3) // Corollary: // e = 1 if (A^2*r1 - r2^2) * A * r2^3) is a non-zero square // e = -1 if (A^2*r1 - r2^2) * A * r2^3) is not a square // Note that w^3 + A*w^2 + w (and therefore e) can never be zero: // w^3 + A*w^2 + w = w * (w^2 + A*w + 1) // w^3 + A*w^2 + w = w * (w^2 + A*w + A^2/4 - A^2/4 + 1) // w^3 + A*w^2 + w = w * (w + A/2)^2 - A^2/4 + 1) // which is zero only if: // w = 0 (impossible) // (w + A/2)^2 = A^2/4 - 1 (impossible, because A^2/4-1 is not a square) // // Let isr = invsqrt((A^2*r1 - r2^2) * A * r2^3) // isr = sqrt(1 / ((A^2*r1 - r2^2) * A * r2^3)) if e = 1 // isr = sqrt(sqrt(-1) / ((A^2*r1 - r2^2) * A * r2^3)) if e = -1 // // if e = 1 // let u1 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2 // u1 = w // u1 = u // // if e = -1 // let ufactor = -non_square * sqrt(-1) * r^2 // let vfactor = sqrt(ufactor) // let u2 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2 * ufactor // u2 = w * -1 * -non_square * r^2 // u2 = w * non_square * r^2 // u2 = u void crypto_hidden_to_curve(uint8_t curve[32], const uint8_t hidden[32]) { // Representatives are encoded in 254 bits. // The two most significant ones are random padding that must be ignored. u8 clamped[32]; COPY(clamped, hidden, 32); clamped[31] &= 0x3f; fe r, u, t1, t2, t3; fe_frombytes(r, clamped); fe_sq2(t1, r); fe_add(u, t1, fe_one); fe_sq (t2, u); fe_mul(t3, A2, t1); fe_sub(t3, t3, t2); fe_mul(t3, t3, A); fe_mul(t1, t2, u); fe_mul(t1, t3, t1); int is_square = invsqrt(t1, t1); fe_sq(u, r); fe_mul(u, u, ufactor); fe_ccopy(u, fe_one, is_square); fe_sq (t1, t1); fe_mul(u, u, A); fe_mul(u, u, t3); fe_mul(u, u, t2); fe_mul(u, u, t1); fe_neg(u, u); fe_tobytes(curve, u); WIPE_BUFFER(t1); WIPE_BUFFER(r); WIPE_BUFFER(t2); WIPE_BUFFER(u); WIPE_BUFFER(t3); WIPE_BUFFER(clamped); } // Elligator inverse map // // Computes the representative of a point, if possible. If not, it does // nothing and returns -1. Note that the success of the operation // depends only on the point (more precisely its u coordinate). The // tweak parameter is used only upon success // // The tweak should be a random byte. Beyond that, its contents are an // implementation detail. Currently, the tweak comprises: // - Bit 1 : sign of the v coordinate (0 if positive, 1 if negative) // - Bit 2-5: not used // - Bits 6-7: random padding // // From the paper: // Let sq = -non_square * u * (u+A) // if sq is not a square, or u = -A, there is no mapping // Assuming there is a mapping: // if v is positive: r = sqrt(-(u+A) / u) // if v is negative: r = sqrt(-u / (u+A)) // // We compute isr = invsqrt(-non_square * u * (u+A)) // if it wasn't a non-zero square, abort. // else, isr = sqrt(-1 / (non_square * u * (u+A)) // // This causes us to abort if u is zero, even though we shouldn't. This // never happens in practice, because (i) a random point in the curve has // a negligible chance of being zero, and (ii) scalar multiplication with // a trimmed scalar *never* yields zero. // // Since: // isr * (u+A) = sqrt(-1 / (non_square * u * (u+A)) * (u+A) // isr * (u+A) = sqrt(-(u+A) / (non_square * u * (u+A)) // and: // isr = u = sqrt(-1 / (non_square * u * (u+A)) * u // isr = u = sqrt(-u / (non_square * u * (u+A)) // Therefore: // if v is positive: r = isr * (u+A) // if v is negative: r = isr * u int crypto_curve_to_hidden(u8 hidden[32], const u8 public_key[32], u8 tweak) { fe t1, t2, t3; fe_frombytes(t1, public_key); fe_add(t2, t1, A); fe_mul(t3, t1, t2); fe_mul_small(t3, t3, -2); int is_square = invsqrt(t3, t3); if (!is_square) { // The only variable time bit. This ultimately reveals how many // tries it took us to find a representable key. // This does not affect security as long as we try keys at random. WIPE_BUFFER(t1); WIPE_BUFFER(t2); WIPE_BUFFER(t3); return -1; } fe_ccopy (t1, t2, tweak & 1); fe_mul (t3, t1, t3); fe_mul_small(t1, t3, 2); fe_neg (t2, t3); fe_ccopy (t3, t2, fe_isodd(t1)); fe_tobytes(hidden, t3); // Pad with two random bits hidden[31] |= tweak & 0xc0; WIPE_BUFFER(t1); WIPE_BUFFER(t2); WIPE_BUFFER(t3); return 0; } void crypto_hidden_key_pair(u8 hidden[32], u8 secret_key[32], u8 seed[32]) { u8 pk [32]; // public key u8 buf[64]; // seed + representative COPY(buf + 32, seed, 32); do { crypto_chacha20(buf, 0, 64, buf+32, zero); crypto_x25519_dirty_fast(pk, buf); // or the "small" version } while(crypto_curve_to_hidden(buf+32, pk, buf[32])); // Note that the return value of crypto_curve_to_hidden() is // independent from its tweak parameter. // Therefore, buf[32] is not actually reused. Either we loop one // more time and buf[32] is used for the new seed, or we succeeded, // and buf[32] becomes the tweak parameter. crypto_wipe(seed, 32); COPY(hidden , buf + 32, 32); COPY(secret_key, buf , 32); WIPE_BUFFER(buf); WIPE_BUFFER(pk); } //////////////////// /// Key exchange /// //////////////////// void crypto_key_exchange(u8 shared_key[32], const u8 your_secret_key [32], const u8 their_public_key[32]) { crypto_x25519(shared_key, your_secret_key, their_public_key); crypto_hchacha20(shared_key, shared_key, zero); } /////////////////////// /// Scalar division /// /////////////////////// // Montgomery reduction. // Divides x by (2^256), and reduces the result modulo L // // Precondition: // x < L * 2^256 // Constants: // r = 2^256 (makes division by r trivial) // k = (r * (1/r) - 1) // L (1/r is computed modulo L ) // Algorithm: // s = (x * k) % r // t = x + s*L (t is always a multiple of r) // u = (t/r) % L (u is always below 2*L, conditional subtraction is enough) static void redc(u32 u[8], u32 x[16]) { static const u32 k[8] = { 0x12547e1b, 0xd2b51da3, 0xfdba84ff, 0xb1a206f2, 0xffa36bea, 0x14e75438, 0x6fe91836, 0x9db6c6f2,}; static const u32 l[8] = { 0x5cf5d3ed, 0x5812631a, 0xa2f79cd6, 0x14def9de, 0x00000000, 0x00000000, 0x00000000, 0x10000000,}; // s = x * k (modulo 2^256) // This is cheaper than the full multiplication. u32 s[8] = {0}; FOR (i, 0, 8) { u64 carry = 0; FOR (j, 0, 8-i) { carry += s[i+j] + (u64)x[i] * k[j]; s[i+j] = (u32)carry; carry >>= 32; } } u32 t[16] = {0}; multiply(t, s, l); // t = t + x u64 carry = 0; FOR (i, 0, 16) { carry += (u64)t[i] + x[i]; t[i] = (u32)carry; carry >>= 32; } // u = (t / 2^256) % L // Note that t / 2^256 is always below 2*L, // So a constant time conditional subtraction is enough // We work with L directly, in a 2's complement encoding // (-L == ~L + 1) remove_l(u, t+8); WIPE_BUFFER(s); WIPE_BUFFER(t); } void crypto_x25519_inverse(u8 blind_salt [32], const u8 private_key[32], const u8 curve_point[32]) { static const u8 Lm2[32] = { // L - 2 0xeb, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, }; // 1 in Montgomery form u32 m_inv [8] = {0x8d98951d, 0xd6ec3174, 0x737dcf70, 0xc6ef5bf4, 0xfffffffe, 0xffffffff, 0xffffffff, 0x0fffffff,}; u8 scalar[32]; COPY(scalar, private_key, 32); trim_scalar(scalar); // Convert the scalar in Montgomery form // m_scl = scalar * 2^256 (modulo L) u32 m_scl[8]; { u32 tmp[16]; ZERO(tmp, 8); load32_le_buf(tmp+8, scalar, 8); mod_l(scalar, tmp); load32_le_buf(m_scl, scalar, 8); WIPE_BUFFER(tmp); // Wipe ASAP to save stack space } u32 product[16]; for (int i = 252; i >= 0; i--) { ZERO(product, 16); multiply(product, m_inv, m_inv); redc(m_inv, product); if (scalar_bit(Lm2, i)) { ZERO(product, 16); multiply(product, m_inv, m_scl); redc(m_inv, product); } } // Convert the inverse *out* of Montgomery form // scalar = m_inv / 2^256 (modulo L) COPY(product, m_inv, 8); ZERO(product + 8, 8); redc(m_inv, product); store32_le_buf(scalar, m_inv, 8); // the *inverse* of the scalar // Clear the cofactor of scalar: // cleared = scalar * (3*L + 1) (modulo 8*L) // cleared = scalar + scalar * 3 * L (modulo 8*L) // Note that (scalar * 3) is reduced modulo 8, so we only need the // first byte. add_xl(scalar, scalar[0] * 3); // Recall that 8*L < 2^256. However it is also very close to // 2^255. If we spanned the ladder over 255 bits, random tests // wouldn't catch the off-by-one error. scalarmult(blind_salt, scalar, curve_point, 256); WIPE_BUFFER(scalar); WIPE_BUFFER(m_scl); WIPE_BUFFER(product); WIPE_BUFFER(m_inv); } //////////////////////////////// /// Authenticated encryption /// //////////////////////////////// static void lock_auth(u8 mac[16], const u8 auth_key[32], const u8 *ad , size_t ad_size, const u8 *cipher_text, size_t text_size) { u8 sizes[16]; // Not secret, not wiped store64_le(sizes + 0, ad_size); store64_le(sizes + 8, text_size); crypto_poly1305_ctx poly_ctx; // auto wiped... crypto_poly1305_init (&poly_ctx, auth_key); crypto_poly1305_update(&poly_ctx, ad , ad_size); crypto_poly1305_update(&poly_ctx, zero , align(ad_size, 16)); crypto_poly1305_update(&poly_ctx, cipher_text, text_size); crypto_poly1305_update(&poly_ctx, zero , align(text_size, 16)); crypto_poly1305_update(&poly_ctx, sizes , 16); crypto_poly1305_final (&poly_ctx, mac); // ...here } void crypto_lock_aead(u8 mac[16], u8 *cipher_text, const u8 key[32], const u8 nonce[24], const u8 *ad , size_t ad_size, const u8 *plain_text, size_t text_size) { u8 sub_key[32]; u8 auth_key[64]; // "Wasting" the whole Chacha block is faster crypto_hchacha20(sub_key, key, nonce); crypto_chacha20(auth_key, 0, 64, sub_key, nonce + 16); crypto_chacha20_ctr(cipher_text, plain_text, text_size, sub_key, nonce + 16, 1); lock_auth(mac, auth_key, ad, ad_size, cipher_text, text_size); WIPE_BUFFER(sub_key); WIPE_BUFFER(auth_key); } int crypto_unlock_aead(u8 *plain_text, const u8 key[32], const u8 nonce[24], const u8 mac[16], const u8 *ad , size_t ad_size, const u8 *cipher_text, size_t text_size) { u8 sub_key[32]; u8 auth_key[64]; // "Wasting" the whole Chacha block is faster crypto_hchacha20(sub_key, key, nonce); crypto_chacha20(auth_key, 0, 64, sub_key, nonce + 16); u8 real_mac[16]; lock_auth(real_mac, auth_key, ad, ad_size, cipher_text, text_size); WIPE_BUFFER(auth_key); if (crypto_verify16(mac, real_mac)) { WIPE_BUFFER(sub_key); WIPE_BUFFER(real_mac); return -1; } crypto_chacha20_ctr(plain_text, cipher_text, text_size, sub_key, nonce + 16, 1); WIPE_BUFFER(sub_key); WIPE_BUFFER(real_mac); return 0; } void crypto_lock(u8 mac[16], u8 *cipher_text, const u8 key[32], const u8 nonce[24], const u8 *plain_text, size_t text_size) { crypto_lock_aead(mac, cipher_text, key, nonce, 0, 0, plain_text, text_size); } int crypto_unlock(u8 *plain_text, const u8 key[32], const u8 nonce[24], const u8 mac[16], const u8 *cipher_text, size_t text_size) { return crypto_unlock_aead(plain_text, key, nonce, mac, 0, 0, cipher_text, text_size); }