/* * * Author: Eugene Shamaev */ #ifndef AP_UAVCAN_H_ #define AP_UAVCAN_H_ #include #include #include #include #include #include #include #include #include #include #ifndef UAVCAN_NODE_POOL_SIZE #define UAVCAN_NODE_POOL_SIZE 8192 #endif #ifndef UAVCAN_NODE_POOL_BLOCK_SIZE #define UAVCAN_NODE_POOL_BLOCK_SIZE 256 #endif #ifndef UAVCAN_SRV_NUMBER #define UAVCAN_SRV_NUMBER 18 #endif #define AP_UAVCAN_MAX_LISTENERS 4 #define AP_UAVCAN_MAX_GPS_NODES 4 #define AP_UAVCAN_MAX_MAG_NODES 4 #define AP_UAVCAN_MAX_BARO_NODES 4 #define AP_UAVCAN_MAX_BI_NUMBER 4 #define AP_UAVCAN_SW_VERS_MAJOR 1 #define AP_UAVCAN_SW_VERS_MINOR 0 #define AP_UAVCAN_HW_VERS_MAJOR 1 #define AP_UAVCAN_HW_VERS_MINOR 0 #define AP_UAVCAN_MAX_LED_DEVICES 4 /* Frontend Backend-Registry Binder: Whenever a message of said DataType_ from new node is received, the Callback will invoke registery to register the node as separate backend. */ #define UC_REGISTRY_BINDER(ClassName_, DataType_) \ class ClassName_ : public AP_UAVCAN::RegistryBinder { \ public: \ ClassName_() : RegistryBinder() {} \ ClassName_(AP_UAVCAN* uc, void (*ffunc)(AP_UAVCAN*, uint8_t, const ClassName_&)) : \ RegistryBinder(uc, (Registry)ffunc) {} \ } class AP_UAVCAN : public AP_HAL::CANProtocol { public: AP_UAVCAN(); ~AP_UAVCAN(); static const struct AP_Param::GroupInfo var_info[]; // Return uavcan from @driver_index or nullptr if it's not ready or doesn't exist static AP_UAVCAN *get_uavcan(uint8_t driver_index); void init(uint8_t driver_index) override; uavcan::Node<0>* get_node() { return _node; } uint8_t get_driver_index() { return _driver_index; } ///// SRV output ///// void SRV_push_servos(void); ///// LED ///// bool led_write(uint8_t led_index, uint8_t red, uint8_t green, uint8_t blue); ///// GPS ///// uint8_t find_gps_without_listener(void); // this function will register the listening class on a first free channel or on the specified channel // if preferred_channel = 0 then free channel will be searched for // if preferred_channel > 0 then listener will be added to specific channel // return value is the number of assigned channel or 0 if fault // channel numbering starts from 1 uint8_t register_gps_listener(AP_GPS_Backend* new_listener, uint8_t preferred_channel); uint8_t register_gps_listener_to_node(AP_GPS_Backend* new_listener, uint8_t node); // Removes specified listener from all nodes void remove_gps_listener(AP_GPS_Backend* rem_listener); // Returns pointer to GPS state connected with specified node. // If node is not found and there are free space, locate a new one AP_GPS::GPS_State *find_gps_node(uint8_t node); // Updates all listeners of specified node void update_gps_state(uint8_t node); ///// BARO ///// struct Baro_Info { float pressure; float pressure_variance; float temperature; float temperature_variance; }; uint8_t find_smallest_free_baro_node(); uint8_t register_baro_listener(AP_Baro_Backend* new_listener, uint8_t preferred_channel); uint8_t register_baro_listener_to_node(AP_Baro_Backend* new_listener, uint8_t node); void remove_baro_listener(AP_Baro_Backend* rem_listener); Baro_Info *find_baro_node(uint8_t node); void update_baro_state(uint8_t node); ///// COMPASS ///// struct Mag_Info { Vector3f mag_vector; }; uint8_t find_smallest_free_mag_node(); uint8_t register_mag_listener(AP_Compass_Backend* new_listener, uint8_t preferred_channel); uint8_t register_mag_listener_to_node(AP_Compass_Backend* new_listener, uint8_t node); void remove_mag_listener(AP_Compass_Backend* rem_listener); Mag_Info *find_mag_node(uint8_t node, uint8_t sensor_id); void update_mag_state(uint8_t node, uint8_t sensor_id); ///// BATTERY ///// struct BatteryInfo_Info { float temperature; float voltage; float current; float remaining_capacity_wh; float full_charge_capacity_wh; uint8_t status_flags; }; uint8_t find_smallest_free_bi_id(); uint8_t register_BM_bi_listener_to_id(AP_BattMonitor_Backend* new_listener, uint8_t id); void remove_BM_bi_listener(AP_BattMonitor_Backend* rem_listener); BatteryInfo_Info *find_bi_id(uint8_t id); void update_bi_state(uint8_t id); template class RegistryBinder { protected: typedef void* (*Registry)(AP_UAVCAN* _ap_uavcan, uint8_t _node_id, const RegistryBinder& _cb); AP_UAVCAN* _uc; Registry _ffunc; public: RegistryBinder() : _uc(), _ffunc(), msg() {} RegistryBinder(AP_UAVCAN* uc, Registry ffunc) : _uc(uc), _ffunc(ffunc), msg(nullptr) {} void operator()(const uavcan::ReceivedDataStructure& _msg) { msg = &_msg; _ffunc(_uc, _msg.getSrcNodeID().get(), *this); } const uavcan::ReceivedDataStructure *msg; }; private: class SystemClock: public uavcan::ISystemClock, uavcan::Noncopyable { public: SystemClock() = default; void adjustUtc(uavcan::UtcDuration adjustment) override { utc_adjustment_usec = adjustment.toUSec(); } uavcan::MonotonicTime getMonotonic() const override { return uavcan::MonotonicTime::fromUSec(AP_HAL::micros64()); } uavcan::UtcTime getUtc() const override { return uavcan::UtcTime::fromUSec(AP_HAL::micros64() + utc_adjustment_usec); } static SystemClock& instance() { static SystemClock inst; return inst; } private: int64_t utc_adjustment_usec; }; // This will be needed to implement if UAVCAN is used with multithreading // Such cases will be firmware update, etc. class RaiiSynchronizer {}; void loop(void); ///// SRV output ///// void SRV_send_actuator(); void SRV_send_esc(); ///// LED ///// void led_out_send(); // UAVCAN parameters AP_Int8 _uavcan_node; AP_Int32 _servo_bm; AP_Int32 _esc_bm; AP_Int16 _servo_rate_hz; uavcan::Node<0> *_node; uavcan::HeapBasedPoolAllocator _node_allocator; uint8_t _driver_index; char _thread_name[9]; bool _initialized; ///// SRV output ///// struct { uint16_t pulse; bool esc_pending; bool servo_pending; } _SRV_conf[UAVCAN_SRV_NUMBER]; uint8_t _SRV_armed; uint32_t _SRV_last_send_us; AP_HAL::Semaphore *SRV_sem; ///// LED ///// struct led_device { uint8_t led_index; uint8_t red; uint8_t green; uint8_t blue; }; struct { led_device devices[AP_UAVCAN_MAX_LED_DEVICES]; uint8_t devices_count; uint64_t last_update; } _led_conf; AP_HAL::Semaphore *_led_out_sem; ///// GPS ///// // 255 - means free node uint8_t _gps_nodes[AP_UAVCAN_MAX_GPS_NODES]; // Counter of how many listeners are connected to this source uint8_t _gps_node_taken[AP_UAVCAN_MAX_GPS_NODES]; // GPS data of the sources AP_GPS::GPS_State _gps_node_state[AP_UAVCAN_MAX_GPS_NODES]; // 255 - means no connection uint8_t _gps_listener_to_node[AP_UAVCAN_MAX_LISTENERS]; // Listeners with callbacks to be updated AP_GPS_Backend* _gps_listeners[AP_UAVCAN_MAX_LISTENERS]; ///// BARO ///// uint8_t _baro_nodes[AP_UAVCAN_MAX_BARO_NODES]; uint8_t _baro_node_taken[AP_UAVCAN_MAX_BARO_NODES]; Baro_Info _baro_node_state[AP_UAVCAN_MAX_BARO_NODES]; uint8_t _baro_listener_to_node[AP_UAVCAN_MAX_LISTENERS]; AP_Baro_Backend* _baro_listeners[AP_UAVCAN_MAX_LISTENERS]; ///// COMPASS ///// uint8_t _mag_nodes[AP_UAVCAN_MAX_MAG_NODES]; uint8_t _mag_node_taken[AP_UAVCAN_MAX_MAG_NODES]; Mag_Info _mag_node_state[AP_UAVCAN_MAX_MAG_NODES]; uint8_t _mag_node_max_sensorid_count[AP_UAVCAN_MAX_MAG_NODES]; uint8_t _mag_listener_to_node[AP_UAVCAN_MAX_LISTENERS]; AP_Compass_Backend* _mag_listeners[AP_UAVCAN_MAX_LISTENERS]; uint8_t _mag_listener_sensor_ids[AP_UAVCAN_MAX_LISTENERS]; ///// BATTERY ///// uint16_t _bi_id[AP_UAVCAN_MAX_BI_NUMBER]; uint16_t _bi_id_taken[AP_UAVCAN_MAX_BI_NUMBER]; BatteryInfo_Info _bi_id_state[AP_UAVCAN_MAX_BI_NUMBER]; uint16_t _bi_BM_listener_to_id[AP_UAVCAN_MAX_LISTENERS]; AP_BattMonitor_Backend* _bi_BM_listeners[AP_UAVCAN_MAX_LISTENERS]; }; #endif /* AP_UAVCAN_H_ */