/* SITL handling This simulates a optical flow sensor Andrew Tridgell November 2011 */ #include #include #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL #include "AP_HAL_AVR_SITL.h" using namespace AVR_SITL; extern const AP_HAL::HAL& hal; #include #include #include #include #include #define MAX_OPTFLOW_DELAY 20 static uint8_t next_optflow_index; static uint8_t optflow_delay; static OpticalFlow::OpticalFlow_state optflow_data[MAX_OPTFLOW_DELAY]; /* update the optical flow with new data */ void SITL_State::_update_flow(void) { double p, q, r; Vector3f gyro; static uint32_t last_flow_ms; if (!_optical_flow || !_sitl->flow_enable) { return; } // update at the requested rate uint32_t now = hal.scheduler->millis(); if (now - last_flow_ms < 1000*(1.0f/_sitl->flow_rate)) { return; } last_flow_ms = now; // convert roll rates to body frame SITL::convert_body_frame(_sitl->state.rollDeg, _sitl->state.pitchDeg, _sitl->state.rollRate, _sitl->state.pitchRate, _sitl->state.yawRate, &p, &q, &r); gyro(p, q, r); OpticalFlow::OpticalFlow_state state; // NED velocity vector in m/s Vector3f velocity(_sitl->state.speedN, _sitl->state.speedE, _sitl->state.speedD); // a rotation matrix following DCM conventions Matrix3f rotmat; rotmat.from_euler(radians(_sitl->state.rollDeg), radians(_sitl->state.pitchDeg), radians(_sitl->state.yawDeg)); state.device_id = 1; state.surface_quality = 51; // estimate range to centre of image float range; if (rotmat.c.z > 0.05f) { range = height_agl() / rotmat.c.z; } else { range = 1e38f; } // Calculate relative velocity in sensor frame assuming no misalignment between sensor and vehicle body axes Vector3f relVelSensor = rotmat.mul_transpose(velocity); // Divide velocity by range and add body rates to get predicted sensed angular // optical rates relative to X and Y sensor axes assuming no misalignment or scale // factor error. Note - these are instantaneous values. The sensor sums these values across the interval from the last // poll to provide a delta angle across the interface state.flowRate.x = -relVelSensor.y/range + gyro.x; state.flowRate.y = relVelSensor.x/range + gyro.y; // The flow sensors body rates are assumed to be the same as the vehicle body rates (ie no misalignment) // Note - these are instantaneous values. The sensor sums these values across the interval from the last // poll to provide a delta angle across the interface. state.bodyRate = Vector2f(gyro.x, gyro.y); optflow_data[next_optflow_index++] = state; if (next_optflow_index >= optflow_delay+1) { next_optflow_index = 0; } state = optflow_data[next_optflow_index]; if (_sitl->flow_delay != optflow_delay) { // cope with updates to the delay control if (_sitl->flow_delay > MAX_OPTFLOW_DELAY) { _sitl->flow_delay = MAX_OPTFLOW_DELAY; } optflow_delay = _sitl->flow_delay; for (uint8_t i=0; isetHIL(state); } #endif