/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ // // Swift Navigation SBP GPS driver for ArduPilot. // Code by Niels Joubert // // Swift Binary Protocol format: http://docs.swift-nav.com/ // #include "AP_GPS.h" #include "AP_GPS_SBP2.h" #include <AP_Logger/AP_Logger.h> #include <GCS_MAVLink/GCS_MAVLink.h> #include <GCS_MAVLink/GCS.h> #if AP_GPS_SBP2_ENABLED extern const AP_HAL::HAL& hal; #define SBP_DEBUGGING 0 #define SBP_INFOREPORTING 1 //INVARIANT: We expect SBP to give us a heartbeat in less than 2 seconds. // This is more lax than the default Piksi settings, // and we assume the user hasn't reconfigured their Piksi to longer heartbeat intervals #define SBP_TIMEOUT_HEARTBEAT 2000 #if SBP_DEBUGGING # define Debug(fmt, args ...) \ do { \ hal.console->printf("%s:%d: " fmt "\n", \ __FUNCTION__, __LINE__, \ ## args); \ hal.scheduler->delay(1); \ } while(0) #else # define Debug(fmt, args ...) #endif #if SBP_INFOREPORTING # define Info(fmt, args ...) \ do { \ GCS_SEND_TEXT(MAV_SEVERITY_INFO, fmt "\n", ## args); \ } while(0) #else # define Info(fmt, args ...) #endif AP_GPS_SBP2::AP_GPS_SBP2(AP_GPS &_gps, AP_GPS::GPS_State &_state, AP_HAL::UARTDriver *_port) : AP_GPS_Backend(_gps, _state, _port) { Debug("SBP Driver Initialized"); parser_state.state = sbp_parser_state_t::WAITING; } // Process all bytes available from the stream // bool AP_GPS_SBP2::read(void) { //Invariant: Calling this function processes *all* data current in the UART buffer. // //IMPORTANT NOTICE: This function is NOT CALLED for several seconds // during arming. That should not cause the driver to die. Process *all* waiting messages _sbp_process(); return _attempt_state_update(); } void AP_GPS_SBP2::inject_data(const uint8_t *data, uint16_t len) { if (port->txspace() > len) { last_injected_data_ms = AP_HAL::millis(); port->write(data, len); } else { Debug("PIKSI: Not enough TXSPACE"); } } //This attempts to reads all SBP messages from the incoming port. //Returns true if a new message was read, false if we failed to read a message. void AP_GPS_SBP2::_sbp_process() { uint32_t nleft = port->available(); while (nleft > 0) { nleft--; uint8_t temp = port->read(); uint16_t crc; //This switch reads one character at a time, //parsing it into buffers until a full message is dispatched switch (parser_state.state) { case sbp_parser_state_t::WAITING: if (temp == SBP_PREAMBLE) { parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_TYPE; } break; case sbp_parser_state_t::GET_TYPE: *((uint8_t*)&(parser_state.msg_type) + parser_state.n_read) = temp; parser_state.n_read += 1; if (parser_state.n_read >= 2) { parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_SENDER; } break; case sbp_parser_state_t::GET_SENDER: *((uint8_t*)&(parser_state.sender_id) + parser_state.n_read) = temp; parser_state.n_read += 1; if (parser_state.n_read >= 2) { parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_LEN; } break; case sbp_parser_state_t::GET_LEN: parser_state.msg_len = temp; parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_MSG; break; case sbp_parser_state_t::GET_MSG: *((uint8_t*)&(parser_state.msg_buff) + parser_state.n_read) = temp; parser_state.n_read += 1; if (parser_state.n_read >= parser_state.msg_len) { parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_CRC; } break; case sbp_parser_state_t::GET_CRC: *((uint8_t*)&(parser_state.crc) + parser_state.n_read) = temp; parser_state.n_read += 1; if (parser_state.n_read >= 2) { parser_state.state = sbp_parser_state_t::WAITING; crc = crc16_ccitt((uint8_t*)&(parser_state.msg_type), 2, 0); crc = crc16_ccitt((uint8_t*)&(parser_state.sender_id), 2, crc); crc = crc16_ccitt(&(parser_state.msg_len), 1, crc); crc = crc16_ccitt(parser_state.msg_buff, parser_state.msg_len, crc); if (parser_state.crc == crc) { _sbp_process_message(); } else { Debug("CRC Error Occurred!"); crc_error_counter += 1; } } break; default: parser_state.state = sbp_parser_state_t::WAITING; break; } } } //INVARIANT: A fully received message with correct CRC is currently in parser_state void AP_GPS_SBP2::_sbp_process_message() { //Here, we copy messages into local structs. switch (parser_state.msg_type) { case SBP_HEARTBEAT_MSGTYPE: memcpy(&last_heartbeat, parser_state.msg_buff, sizeof(struct sbp_heartbeat_t)); last_heartbeat_received_ms = AP_HAL::millis(); break; case SBP_GPS_TIME_MSGTYPE: memcpy(&last_gps_time, parser_state.msg_buff, sizeof(struct sbp_gps_time_t)); check_new_itow(last_gps_time.tow, parser_state.msg_len); break; case SBP_VEL_NED_MSGTYPE: memcpy(&last_vel_ned, parser_state.msg_buff, sizeof(struct sbp_vel_ned_t)); check_new_itow(last_vel_ned.tow, parser_state.msg_len); break; case SBP_POS_LLH_MSGTYPE: memcpy(&last_pos_llh, parser_state.msg_buff, sizeof(struct sbp_pos_llh_t)); check_new_itow(last_pos_llh.tow, parser_state.msg_len); break; case SBP_DOPS_MSGTYPE: memcpy(&last_dops, parser_state.msg_buff, sizeof(struct sbp_dops_t)); check_new_itow(last_dops.tow, parser_state.msg_len); break; case SBP_EXT_EVENT_MSGTYPE: memcpy(&last_event, parser_state.msg_buff, sizeof(struct sbp_ext_event_t)); check_new_itow(last_event.tow, parser_state.msg_len); logging_ext_event(); break; default: break; } // send all messages we receive to log, even if it's an unsupported message, // so we can do additional post-processing from logs. // The log mask will be used to adjust or suppress logging logging_log_raw_sbp(parser_state.msg_type, parser_state.sender_id, parser_state.msg_len, parser_state.msg_buff); } int32_t AP_GPS_SBP2::distMod(int32_t tow1_ms, int32_t tow2_ms, int32_t mod) { return MIN(abs(tow1_ms - tow2_ms), mod - abs(tow1_ms - tow2_ms)); } bool AP_GPS_SBP2::_attempt_state_update() { if (last_heartbeat_received_ms == 0) return false; uint32_t now = AP_HAL::millis(); if (now - last_heartbeat_received_ms > SBP_TIMEOUT_HEARTBEAT) { state.status = AP_GPS::NO_FIX; Info("No Heartbeats from Piksi! Status to NO_FIX."); return false; } else if (last_heartbeat.protocol_major != 2) { state.status = AP_GPS::NO_FIX; Info("Received a heartbeat from non-SBPv2 device. Current driver only supports SBPv2. Status to NO_FIX."); return false; } else if (last_heartbeat.nap_error == 1 || last_heartbeat.io_error == 1 || last_heartbeat.sys_error == 1) { state.status = AP_GPS::NO_FIX; Info("Piksi reported an error. Status to NO_FIX."); Debug(" ext_antenna: %d", last_heartbeat.ext_antenna); Debug(" res2: %d", last_heartbeat.res2); Debug(" protocol_major: %d", last_heartbeat.protocol_major); Debug(" protocol_minor: %d", last_heartbeat.protocol_minor); Debug(" res: %d", last_heartbeat.res); Debug(" nap_error: %d", last_heartbeat.nap_error); Debug(" io_error: %d", last_heartbeat.io_error); Debug(" sys_error: %d", last_heartbeat.sys_error); return false; } else if (last_pos_llh.tow == last_vel_ned.tow && (distMod(last_gps_time.tow, last_vel_ned.tow, AP_MSEC_PER_WEEK) < 10000) && (distMod(last_dops.tow, last_vel_ned.tow, AP_MSEC_PER_WEEK) < 60000) && (last_vel_ned.tow > last_full_update_tow || (last_gps_time.wn > last_full_update_wn && last_vel_ned.tow < last_full_update_tow))) { //We have an aligned VEL and LLH, and a recent DOPS and TIME. // // Check Flags for Valid Messages // if (last_gps_time.flags.time_src == 0 || last_vel_ned.flags.vel_mode == 0 || last_pos_llh.flags.fix_mode == 0 || last_dops.flags.fix_mode == 0) { Debug("Message Marked as Invalid. NO FIX! Flags: {GPS_TIME: %d, VEL_NED: %d, POS_LLH: %d, DOPS: %d}", last_gps_time.flags.time_src, last_vel_ned.flags.vel_mode, last_pos_llh.flags.fix_mode, last_dops.flags.fix_mode); state.status = AP_GPS::NO_FIX; return false; } // // Update external time and accuracy state // state.time_week = last_gps_time.wn; state.time_week_ms = last_vel_ned.tow; state.hdop = last_dops.hdop; state.vdop = last_dops.vdop; state.last_gps_time_ms = now; // // Update velocity state // state.velocity[0] = (float)(last_vel_ned.n * 1.0e-3); state.velocity[1] = (float)(last_vel_ned.e * 1.0e-3); state.velocity[2] = (float)(last_vel_ned.d * 1.0e-3); float ground_vector_sq = state.velocity[0]*state.velocity[0] + state.velocity[1]*state.velocity[1]; state.ground_speed = safe_sqrt(ground_vector_sq); state.ground_course = wrap_360(degrees(atan2f(state.velocity[1], state.velocity[0]))); state.speed_accuracy = safe_sqrt( powf((float)last_vel_ned.h_accuracy * 1.0e-3f, 2) + powf((float)last_vel_ned.v_accuracy * 1.0e-3f, 2)); state.horizontal_accuracy = (float) last_pos_llh.h_accuracy * 1.0e-3f; state.vertical_accuracy = (float) last_pos_llh.v_accuracy * 1.0e-3f; // // Set flags appropriately // state.have_vertical_velocity = true; state.have_speed_accuracy = !is_zero(state.speed_accuracy); state.have_horizontal_accuracy = !is_zero(state.horizontal_accuracy); state.have_vertical_accuracy = !is_zero(state.vertical_accuracy); // // Update position state // state.location.lat = (int32_t) (last_pos_llh.lat * (double)1e7); state.location.lng = (int32_t) (last_pos_llh.lon * (double)1e7); state.location.alt = (int32_t) (last_pos_llh.height * 100); state.num_sats = last_pos_llh.n_sats; switch (last_pos_llh.flags.fix_mode) { case 1: state.status = AP_GPS::GPS_OK_FIX_3D; break; case 2: state.status = AP_GPS::GPS_OK_FIX_3D_DGPS; break; case 3: state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT; break; case 4: state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FIXED; break; case 6: state.status = AP_GPS::GPS_OK_FIX_3D_DGPS; break; default: state.status = AP_GPS::NO_FIX; break; } // // Update Internal Timing // last_full_update_tow = last_vel_ned.tow; last_full_update_wn = last_gps_time.wn; return true; } return false; } bool AP_GPS_SBP2::_detect(struct SBP2_detect_state &state, uint8_t data) { // This switch reads one character at a time, if we find something that // looks like our preamble we'll try to read the full message length, // calculating the CRC. If the CRC matches, we have an SBP GPS! switch (state.state) { case SBP2_detect_state::WAITING: if (data == SBP_PREAMBLE) { state.n_read = 0; state.crc_so_far = 0; state.state = SBP2_detect_state::GET_TYPE; } break; case SBP2_detect_state::GET_TYPE: *((uint8_t*)&(state.msg_type) + state.n_read) = data; state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); state.n_read += 1; if (state.n_read >= 2) { state.n_read = 0; state.state = SBP2_detect_state::GET_SENDER; } break; case SBP2_detect_state::GET_SENDER: state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); state.n_read += 1; if (state.n_read >= 2) { state.n_read = 0; state.state = SBP2_detect_state::GET_LEN; } break; case SBP2_detect_state::GET_LEN: state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); state.msg_len = data; state.n_read = 0; state.state = SBP2_detect_state::GET_MSG; break; case SBP2_detect_state::GET_MSG: if (state.msg_type == SBP_HEARTBEAT_MSGTYPE && state.n_read < 4) { *((uint8_t*)&(state.heartbeat_buff) + state.n_read) = data; } state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); state.n_read += 1; if (state.n_read >= state.msg_len) { state.n_read = 0; state.state = SBP2_detect_state::GET_CRC; } break; case SBP2_detect_state::GET_CRC: *((uint8_t*)&(state.crc) + state.n_read) = data; state.n_read += 1; if (state.n_read >= 2) { state.state = SBP2_detect_state::WAITING; if (state.crc == state.crc_so_far && state.msg_type == SBP_HEARTBEAT_MSGTYPE) { struct sbp_heartbeat_t* heartbeat = ((struct sbp_heartbeat_t*)state.heartbeat_buff); return heartbeat->protocol_major == 2; } return false; } break; default: state.state = SBP2_detect_state::WAITING; break; } return false; } void AP_GPS_SBP2::logging_log_full_update() { if (!should_log()) { return; } //TODO: Expand with heartbeat info. //TODO: Get rid of IAR NUM HYPO struct log_SbpHealth pkt = { LOG_PACKET_HEADER_INIT(LOG_MSG_SBPHEALTH), time_us : AP_HAL::micros64(), crc_error_counter : crc_error_counter, last_injected_data_ms : last_injected_data_ms, last_iar_num_hypotheses : 0, }; AP::logger().WriteBlock(&pkt, sizeof(pkt)); }; void AP_GPS_SBP2::logging_log_raw_sbp(uint16_t msg_type, uint16_t sender_id, uint8_t msg_len, uint8_t *msg_buff) { if (!should_log()) { return; } //MASK OUT MESSAGES WE DON'T WANT TO LOG if (( ((uint16_t) gps._sbp_logmask) & msg_type) == 0) { return; } uint64_t time_us = AP_HAL::micros64(); uint8_t pages = 1; if (msg_len > 48) { pages += (msg_len - 48) / 104 + 1; } struct log_SbpRAWH pkt = { LOG_PACKET_HEADER_INIT(LOG_MSG_SBPRAWH), time_us : time_us, msg_type : msg_type, sender_id : sender_id, index : 1, pages : pages, msg_len : msg_len, }; memcpy(pkt.data, msg_buff, MIN(msg_len, 48)); AP::logger().WriteBlock(&pkt, sizeof(pkt)); for (uint8_t i = 0; i < pages - 1; i++) { struct log_SbpRAWM pkt2 = { LOG_PACKET_HEADER_INIT(LOG_MSG_SBPRAWM), time_us : time_us, msg_type : msg_type, sender_id : sender_id, index : uint8_t(i + 2), pages : pages, msg_len : msg_len, }; memcpy(pkt2.data, &msg_buff[48 + i * 104], MIN(msg_len - (48 + i * 104), 104)); AP::logger().WriteBlock(&pkt2, sizeof(pkt2)); } }; void AP_GPS_SBP2::logging_ext_event() { if (!should_log()) { return; } struct log_SbpEvent pkt = { LOG_PACKET_HEADER_INIT(LOG_MSG_SBPEVENT), time_us : AP_HAL::micros64(), wn : last_event.wn, tow : last_event.tow, ns_residual : last_event.ns_residual, level : last_event.flags.level, quality : last_event.flags.quality, }; AP::logger().WriteBlock(&pkt, sizeof(pkt)); }; #endif //AP_GPS_SBP2_ENABLED