#include #include "AP_NavEKF3.h" #include "AP_NavEKF3_core.h" #if EK3_FEATURE_OPTFLOW_FUSION #include #include /******************************************************** * RESET FUNCTIONS * ********************************************************/ /******************************************************** * FUSE MEASURED_DATA * ********************************************************/ // select fusion of optical flow measurements void NavEKF3_core::SelectFlowFusion() { // Check if the magnetometer has been fused on that time step and the filter is running at faster than 200 Hz // If so, don't fuse measurements on this time step to reduce frame over-runs // Only allow one time slip to prevent high rate magnetometer data preventing fusion of other measurements if (magFusePerformed && dtIMUavg < 0.005f && !optFlowFusionDelayed) { optFlowFusionDelayed = true; return; } else { optFlowFusionDelayed = false; } of_elements ofDataDelayed; // OF data at the fusion time horizon // Check for data at the fusion time horizon const bool flowDataToFuse = storedOF.recall(ofDataDelayed, imuDataDelayed.time_ms); // Perform Data Checks // Check if the optical flow data is still valid flowDataValid = ((imuSampleTime_ms - flowValidMeaTime_ms) < 1000); // check is the terrain offset estimate is still valid - if we are using range finder as the main height reference, the ground is assumed to be at 0 gndOffsetValid = ((imuSampleTime_ms - gndHgtValidTime_ms) < 5000) || (activeHgtSource == AP_NavEKF_Source::SourceZ::RANGEFINDER); // Perform tilt check bool tiltOK = (prevTnb.c.z > frontend->DCM33FlowMin); // Constrain measurements to zero if takeoff is not detected and the height above ground // is insufficient to achieve acceptable focus. This allows the vehicle to be picked up // and carried to test optical flow operation if (!takeOffDetected && ((terrainState - stateStruct.position.z) < 0.5f)) { ofDataDelayed.flowRadXYcomp.zero(); ofDataDelayed.flowRadXY.zero(); flowDataValid = true; } // if have valid flow or range measurements, fuse data into a 1-state EKF to estimate terrain height if (((flowDataToFuse && (frontend->_flowUse == FLOW_USE_TERRAIN)) || rangeDataToFuse) && tiltOK) { // Estimate the terrain offset (runs a one state EKF) EstimateTerrainOffset(ofDataDelayed); } // Fuse optical flow data into the main filter if (flowDataToFuse && tiltOK) { const bool fuse_optflow = (frontend->_flowUse == FLOW_USE_NAV) && frontend->sources.useVelXYSource(AP_NavEKF_Source::SourceXY::OPTFLOW); // Set the flow noise used by the fusion processes R_LOS = sq(MAX(frontend->_flowNoise, 0.05f)); // Fuse the optical flow X and Y axis data into the main filter sequentially FuseOptFlow(ofDataDelayed, fuse_optflow); } } /* Estimation of terrain offset using a single state EKF The filter can fuse motion compensated optical flow rates and range finder measurements Equations generated using https://github.com/PX4/ecl/tree/master/EKF/matlab/scripts/Terrain%20Estimator */ void NavEKF3_core::EstimateTerrainOffset(const of_elements &ofDataDelayed) { // horizontal velocity squared ftype velHorizSq = sq(stateStruct.velocity.x) + sq(stateStruct.velocity.y); // don't fuse flow data if LOS rate is misaligned, without GPS, or insufficient velocity, as it is poorly observable // don't fuse flow data if it exceeds validity limits // don't update terrain offset if ground is being used as the zero height datum in the main filter bool cantFuseFlowData = ((frontend->_flowUse != FLOW_USE_TERRAIN) || !gpsIsInUse || PV_AidingMode == AID_RELATIVE || velHorizSq < 25.0f || (MAX(ofDataDelayed.flowRadXY[0],ofDataDelayed.flowRadXY[1]) > frontend->_maxFlowRate)); if ((!rangeDataToFuse && cantFuseFlowData) || (activeHgtSource == AP_NavEKF_Source::SourceZ::RANGEFINDER)) { // skip update inhibitGndState = true; } else { inhibitGndState = false; // propagate ground position state noise each time this is called using the difference in position since the last observations and an RMS gradient assumption // limit distance to prevent intialisation after bad gps causing bad numerical conditioning ftype distanceTravelledSq = sq(stateStruct.position[0] - prevPosN) + sq(stateStruct.position[1] - prevPosE); distanceTravelledSq = MIN(distanceTravelledSq, 100.0f); prevPosN = stateStruct.position[0]; prevPosE = stateStruct.position[1]; // in addition to a terrain gradient error model, we also have the growth in uncertainty due to the copter's vertical velocity ftype timeLapsed = MIN(0.001f * (imuSampleTime_ms - timeAtLastAuxEKF_ms), 1.0f); ftype Pincrement = (distanceTravelledSq * sq(frontend->_terrGradMax)) + sq(timeLapsed)*P[6][6]; Popt += Pincrement; timeAtLastAuxEKF_ms = imuSampleTime_ms; // fuse range finder data if (rangeDataToFuse) { // reset terrain state if rangefinder data not fused for 5 seconds if (imuSampleTime_ms - gndHgtValidTime_ms > 5000) { terrainState = MAX(rangeDataDelayed.rng * prevTnb.c.z, rngOnGnd) + stateStruct.position.z; } // predict range ftype predRngMeas = MAX((terrainState - stateStruct.position[2]),rngOnGnd) / prevTnb.c.z; // Copy required states to local variable names ftype q0 = stateStruct.quat[0]; // quaternion at optical flow measurement time ftype q1 = stateStruct.quat[1]; // quaternion at optical flow measurement time ftype q2 = stateStruct.quat[2]; // quaternion at optical flow measurement time ftype q3 = stateStruct.quat[3]; // quaternion at optical flow measurement time // Set range finder measurement noise variance. TODO make this a function of range and tilt to allow for sensor, alignment and AHRS errors ftype R_RNG = frontend->_rngNoise; // calculate Kalman gain ftype SK_RNG = sq(q0) - sq(q1) - sq(q2) + sq(q3); ftype K_RNG = Popt/(SK_RNG*(R_RNG + Popt/sq(SK_RNG))); // Calculate the innovation variance for data logging varInnovRng = (R_RNG + Popt/sq(SK_RNG)); // constrain terrain height to be below the vehicle terrainState = MAX(terrainState, stateStruct.position[2] + rngOnGnd); // Calculate the measurement innovation innovRng = predRngMeas - rangeDataDelayed.rng; // calculate the innovation consistency test ratio auxRngTestRatio = sq(innovRng) / (sq(MAX(0.01f * (ftype)frontend->_rngInnovGate, 1.0f)) * varInnovRng); // Check the innovation test ratio and don't fuse if too large if (auxRngTestRatio < 1.0f) { // correct the state terrainState -= K_RNG * innovRng; // constrain the state terrainState = MAX(terrainState, stateStruct.position[2] + rngOnGnd); // correct the covariance Popt = Popt - sq(Popt)/(SK_RNG*(R_RNG + Popt/sq(SK_RNG))*(sq(q0) - sq(q1) - sq(q2) + sq(q3))); // prevent the state variance from becoming negative Popt = MAX(Popt,0.0f); // record the time we last updated the terrain offset state gndHgtValidTime_ms = imuSampleTime_ms; } } if (!cantFuseFlowData) { Vector3F relVelSensor; // velocity of sensor relative to ground in sensor axes Vector2F losPred; // predicted optical flow angular rate measurement ftype q0 = stateStruct.quat[0]; // quaternion at optical flow measurement time ftype q1 = stateStruct.quat[1]; // quaternion at optical flow measurement time ftype q2 = stateStruct.quat[2]; // quaternion at optical flow measurement time ftype q3 = stateStruct.quat[3]; // quaternion at optical flow measurement time ftype K_OPT; ftype H_OPT; Vector2F auxFlowObsInnovVar; // predict range to centre of image ftype flowRngPred = MAX((terrainState - stateStruct.position.z),rngOnGnd) / prevTnb.c.z; // constrain terrain height to be below the vehicle terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd); // calculate relative velocity in sensor frame relVelSensor = prevTnb*stateStruct.velocity; // divide velocity by range, subtract body rates and apply scale factor to // get predicted sensed angular optical rates relative to X and Y sensor axes losPred.x = relVelSensor.y / flowRngPred; losPred.y = - relVelSensor.x / flowRngPred; // calculate innovations auxFlowObsInnov = losPred - ofDataDelayed.flowRadXYcomp; // calculate observation jacobians ftype t2 = q0*q0; ftype t3 = q1*q1; ftype t4 = q2*q2; ftype t5 = q3*q3; ftype t6 = stateStruct.position.z - terrainState; ftype t7 = 1.0f / (t6*t6); ftype t8 = q0*q3*2.0f; ftype t9 = t2-t3-t4+t5; // prevent the state variances from becoming badly conditioned Popt = MAX(Popt,1E-6f); // calculate observation noise variance from parameter ftype flow_noise_variance = sq(MAX(frontend->_flowNoise, 0.05f)); // Fuse Y axis data // Calculate observation partial derivative H_OPT = t7*t9*(-stateStruct.velocity.z*(q0*q2*2.0-q1*q3*2.0)+stateStruct.velocity.x*(t2+t3-t4-t5)+stateStruct.velocity.y*(t8+q1*q2*2.0)); // calculate innovation variance auxFlowObsInnovVar.y = H_OPT * Popt * H_OPT + flow_noise_variance; // calculate Kalman gain K_OPT = Popt * H_OPT / auxFlowObsInnovVar.y; // calculate the innovation consistency test ratio auxFlowTestRatio.y = sq(auxFlowObsInnov.y) / (sq(MAX(0.01f * (ftype)frontend->_flowInnovGate, 1.0f)) * auxFlowObsInnovVar.y); // don't fuse if optical flow data is outside valid range if (auxFlowTestRatio.y < 1.0f) { // correct the state terrainState -= K_OPT * auxFlowObsInnov.y; // constrain the state terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd); // update intermediate variables used when fusing the X axis t6 = stateStruct.position.z - terrainState; t7 = 1.0f / (t6*t6); // correct the covariance Popt = Popt - K_OPT * H_OPT * Popt; // prevent the state variances from becoming badly conditioned Popt = MAX(Popt,1E-6f); // record the time we last updated the terrain offset state gndHgtValidTime_ms = imuSampleTime_ms; } // fuse X axis data H_OPT = -t7*t9*(stateStruct.velocity.z*(q0*q1*2.0+q2*q3*2.0)+stateStruct.velocity.y*(t2-t3+t4-t5)-stateStruct.velocity.x*(t8-q1*q2*2.0)); // calculate innovation variances auxFlowObsInnovVar.x = H_OPT * Popt * H_OPT + flow_noise_variance; // calculate Kalman gain K_OPT = Popt * H_OPT / auxFlowObsInnovVar.x; // calculate the innovation consistency test ratio auxFlowTestRatio.x = sq(auxFlowObsInnov.x) / (sq(MAX(0.01f * (ftype)frontend->_flowInnovGate, 1.0f)) * auxFlowObsInnovVar.x); // don't fuse if optical flow data is outside valid range if (auxFlowTestRatio.x < 1.0f) { // correct the state terrainState -= K_OPT * auxFlowObsInnov.x; // constrain the state terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd); // correct the covariance Popt = Popt - K_OPT * H_OPT * Popt; // prevent the state variances from becoming badly conditioned Popt = MAX(Popt,1E-6f); } } } } /* * Fuse angular motion compensated optical flow rates using explicit algebraic equations generated with Matlab symbolic toolbox. * The script file used to generate these and other equations in this filter can be found here: * https://github.com/PX4/ecl/blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m * Requires a valid terrain height estimate. * * really_fuse should be true to actually fuse into the main filter, false to only calculate variances */ void NavEKF3_core::FuseOptFlow(const of_elements &ofDataDelayed, bool really_fuse) { Vector24 H_LOS; Vector2 losPred; // Copy required states to local variable names ftype q0 = stateStruct.quat[0]; ftype q1 = stateStruct.quat[1]; ftype q2 = stateStruct.quat[2]; ftype q3 = stateStruct.quat[3]; ftype vn = stateStruct.velocity.x; ftype ve = stateStruct.velocity.y; ftype vd = stateStruct.velocity.z; ftype pd = stateStruct.position.z; // constrain height above ground to be above range measured on ground ftype heightAboveGndEst = MAX((terrainState - pd), rngOnGnd); // calculate range from ground plain to centre of sensor fov assuming flat earth ftype range = constrain_ftype((heightAboveGndEst/prevTnb.c.z),rngOnGnd,1000.0f); // correct range for flow sensor offset body frame position offset // the corrected value is the predicted range from the sensor focal point to the // centre of the image on the ground assuming flat terrain Vector3F posOffsetBody = ofDataDelayed.body_offset - accelPosOffset; if (!posOffsetBody.is_zero()) { Vector3F posOffsetEarth = prevTnb.mul_transpose(posOffsetBody); range -= posOffsetEarth.z / prevTnb.c.z; } #if APM_BUILD_TYPE(APM_BUILD_Rover) // override with user specified height (if given, for rover) if (ofDataDelayed.heightOverride > 0) { range = ofDataDelayed.heightOverride; } #endif // Fuse X and Y axis measurements sequentially assuming observation errors are uncorrelated for (uint8_t obsIndex=0; obsIndex<=1; obsIndex++) { // fuse X axis data first // calculate relative velocity in sensor frame including the relative motion due to rotation const Vector3F relVelSensor = (prevTnb * stateStruct.velocity) + (ofDataDelayed.bodyRadXYZ % posOffsetBody); // divide velocity by range to get predicted angular LOS rates relative to X and Y axes losPred[0] = relVelSensor.y/range; losPred[1] = -relVelSensor.x/range; // calculate observation jacobians and Kalman gains memset(&H_LOS[0], 0, sizeof(H_LOS)); if (obsIndex == 0) { // calculate X axis observation Jacobian ftype t2 = 1.0f / range; H_LOS[0] = t2*(q1*vd*2.0f+q0*ve*2.0f-q3*vn*2.0f); H_LOS[1] = t2*(q0*vd*2.0f-q1*ve*2.0f+q2*vn*2.0f); H_LOS[2] = t2*(q3*vd*2.0f+q2*ve*2.0f+q1*vn*2.0f); H_LOS[3] = -t2*(q2*vd*-2.0f+q3*ve*2.0f+q0*vn*2.0f); H_LOS[4] = -t2*(q0*q3*2.0f-q1*q2*2.0f); H_LOS[5] = t2*(q0*q0-q1*q1+q2*q2-q3*q3); H_LOS[6] = t2*(q0*q1*2.0f+q2*q3*2.0f); // calculate intermediate variables for the X observation innovation variance and Kalman gains ftype t3 = q1*vd*2.0f; ftype t4 = q0*ve*2.0f; ftype t11 = q3*vn*2.0f; ftype t5 = t3+t4-t11; ftype t6 = q0*q3*2.0f; ftype t29 = q1*q2*2.0f; ftype t7 = t6-t29; ftype t8 = q0*q1*2.0f; ftype t9 = q2*q3*2.0f; ftype t10 = t8+t9; ftype t12 = P[0][0]*t2*t5; ftype t13 = q0*vd*2.0f; ftype t14 = q2*vn*2.0f; ftype t28 = q1*ve*2.0f; ftype t15 = t13+t14-t28; ftype t16 = q3*vd*2.0f; ftype t17 = q2*ve*2.0f; ftype t18 = q1*vn*2.0f; ftype t19 = t16+t17+t18; ftype t20 = q3*ve*2.0f; ftype t21 = q0*vn*2.0f; ftype t30 = q2*vd*2.0f; ftype t22 = t20+t21-t30; ftype t23 = q0*q0; ftype t24 = q1*q1; ftype t25 = q2*q2; ftype t26 = q3*q3; ftype t27 = t23-t24+t25-t26; ftype t31 = P[1][1]*t2*t15; ftype t32 = P[6][0]*t2*t10; ftype t33 = P[1][0]*t2*t15; ftype t34 = P[2][0]*t2*t19; ftype t35 = P[5][0]*t2*t27; ftype t79 = P[4][0]*t2*t7; ftype t80 = P[3][0]*t2*t22; ftype t36 = t12+t32+t33+t34+t35-t79-t80; ftype t37 = t2*t5*t36; ftype t38 = P[6][1]*t2*t10; ftype t39 = P[0][1]*t2*t5; ftype t40 = P[2][1]*t2*t19; ftype t41 = P[5][1]*t2*t27; ftype t81 = P[4][1]*t2*t7; ftype t82 = P[3][1]*t2*t22; ftype t42 = t31+t38+t39+t40+t41-t81-t82; ftype t43 = t2*t15*t42; ftype t44 = P[6][2]*t2*t10; ftype t45 = P[0][2]*t2*t5; ftype t46 = P[1][2]*t2*t15; ftype t47 = P[2][2]*t2*t19; ftype t48 = P[5][2]*t2*t27; ftype t83 = P[4][2]*t2*t7; ftype t84 = P[3][2]*t2*t22; ftype t49 = t44+t45+t46+t47+t48-t83-t84; ftype t50 = t2*t19*t49; ftype t51 = P[6][3]*t2*t10; ftype t52 = P[0][3]*t2*t5; ftype t53 = P[1][3]*t2*t15; ftype t54 = P[2][3]*t2*t19; ftype t55 = P[5][3]*t2*t27; ftype t85 = P[4][3]*t2*t7; ftype t86 = P[3][3]*t2*t22; ftype t56 = t51+t52+t53+t54+t55-t85-t86; ftype t57 = P[6][5]*t2*t10; ftype t58 = P[0][5]*t2*t5; ftype t59 = P[1][5]*t2*t15; ftype t60 = P[2][5]*t2*t19; ftype t61 = P[5][5]*t2*t27; ftype t88 = P[4][5]*t2*t7; ftype t89 = P[3][5]*t2*t22; ftype t62 = t57+t58+t59+t60+t61-t88-t89; ftype t63 = t2*t27*t62; ftype t64 = P[6][4]*t2*t10; ftype t65 = P[0][4]*t2*t5; ftype t66 = P[1][4]*t2*t15; ftype t67 = P[2][4]*t2*t19; ftype t68 = P[5][4]*t2*t27; ftype t90 = P[4][4]*t2*t7; ftype t91 = P[3][4]*t2*t22; ftype t69 = t64+t65+t66+t67+t68-t90-t91; ftype t70 = P[6][6]*t2*t10; ftype t71 = P[0][6]*t2*t5; ftype t72 = P[1][6]*t2*t15; ftype t73 = P[2][6]*t2*t19; ftype t74 = P[5][6]*t2*t27; ftype t93 = P[4][6]*t2*t7; ftype t94 = P[3][6]*t2*t22; ftype t75 = t70+t71+t72+t73+t74-t93-t94; ftype t76 = t2*t10*t75; ftype t87 = t2*t22*t56; ftype t92 = t2*t7*t69; ftype t77 = R_LOS+t37+t43+t50+t63+t76-t87-t92; ftype t78; // calculate innovation variance for X axis observation and protect against a badly conditioned calculation if (t77 > R_LOS) { t78 = 1.0f/t77; faultStatus.bad_xflow = false; } else { t77 = R_LOS; t78 = 1.0f/R_LOS; faultStatus.bad_xflow = true; return; } flowVarInnov[0] = t77; // calculate innovation for X axis observation // flowInnovTime_ms will be updated when Y-axis innovations are calculated flowInnov[0] = losPred[0] - ofDataDelayed.flowRadXYcomp.x; // calculate Kalman gains for X-axis observation Kfusion[0] = t78*(t12-P[0][4]*t2*t7+P[0][1]*t2*t15+P[0][6]*t2*t10+P[0][2]*t2*t19-P[0][3]*t2*t22+P[0][5]*t2*t27); Kfusion[1] = t78*(t31+P[1][0]*t2*t5-P[1][4]*t2*t7+P[1][6]*t2*t10+P[1][2]*t2*t19-P[1][3]*t2*t22+P[1][5]*t2*t27); Kfusion[2] = t78*(t47+P[2][0]*t2*t5-P[2][4]*t2*t7+P[2][1]*t2*t15+P[2][6]*t2*t10-P[2][3]*t2*t22+P[2][5]*t2*t27); Kfusion[3] = t78*(-t86+P[3][0]*t2*t5-P[3][4]*t2*t7+P[3][1]*t2*t15+P[3][6]*t2*t10+P[3][2]*t2*t19+P[3][5]*t2*t27); Kfusion[4] = t78*(-t90+P[4][0]*t2*t5+P[4][1]*t2*t15+P[4][6]*t2*t10+P[4][2]*t2*t19-P[4][3]*t2*t22+P[4][5]*t2*t27); Kfusion[5] = t78*(t61+P[5][0]*t2*t5-P[5][4]*t2*t7+P[5][1]*t2*t15+P[5][6]*t2*t10+P[5][2]*t2*t19-P[5][3]*t2*t22); Kfusion[6] = t78*(t70+P[6][0]*t2*t5-P[6][4]*t2*t7+P[6][1]*t2*t15+P[6][2]*t2*t19-P[6][3]*t2*t22+P[6][5]*t2*t27); Kfusion[7] = t78*(P[7][0]*t2*t5-P[7][4]*t2*t7+P[7][1]*t2*t15+P[7][6]*t2*t10+P[7][2]*t2*t19-P[7][3]*t2*t22+P[7][5]*t2*t27); Kfusion[8] = t78*(P[8][0]*t2*t5-P[8][4]*t2*t7+P[8][1]*t2*t15+P[8][6]*t2*t10+P[8][2]*t2*t19-P[8][3]*t2*t22+P[8][5]*t2*t27); Kfusion[9] = t78*(P[9][0]*t2*t5-P[9][4]*t2*t7+P[9][1]*t2*t15+P[9][6]*t2*t10+P[9][2]*t2*t19-P[9][3]*t2*t22+P[9][5]*t2*t27); if (!inhibitDelAngBiasStates) { Kfusion[10] = t78*(P[10][0]*t2*t5-P[10][4]*t2*t7+P[10][1]*t2*t15+P[10][6]*t2*t10+P[10][2]*t2*t19-P[10][3]*t2*t22+P[10][5]*t2*t27); Kfusion[11] = t78*(P[11][0]*t2*t5-P[11][4]*t2*t7+P[11][1]*t2*t15+P[11][6]*t2*t10+P[11][2]*t2*t19-P[11][3]*t2*t22+P[11][5]*t2*t27); Kfusion[12] = t78*(P[12][0]*t2*t5-P[12][4]*t2*t7+P[12][1]*t2*t15+P[12][6]*t2*t10+P[12][2]*t2*t19-P[12][3]*t2*t22+P[12][5]*t2*t27); } else { // zero indexes 10 to 12 zero_range(&Kfusion[0], 10, 12); } if (!inhibitDelVelBiasStates && !badIMUdata) { for (uint8_t index = 0; index < 3; index++) { const uint8_t stateIndex = index + 13; if (!dvelBiasAxisInhibit[index]) { Kfusion[stateIndex] = t78*(P[stateIndex][0]*t2*t5-P[stateIndex][4]*t2*t7+P[stateIndex][1]*t2*t15+P[stateIndex][6]*t2*t10+P[stateIndex][2]*t2*t19-P[stateIndex][3]*t2*t22+P[stateIndex][5]*t2*t27); } else { Kfusion[stateIndex] = 0.0f; } } } else { // zero indexes 13 to 15 zero_range(&Kfusion[0], 13, 15); } if (!inhibitMagStates) { Kfusion[16] = t78*(P[16][0]*t2*t5-P[16][4]*t2*t7+P[16][1]*t2*t15+P[16][6]*t2*t10+P[16][2]*t2*t19-P[16][3]*t2*t22+P[16][5]*t2*t27); Kfusion[17] = t78*(P[17][0]*t2*t5-P[17][4]*t2*t7+P[17][1]*t2*t15+P[17][6]*t2*t10+P[17][2]*t2*t19-P[17][3]*t2*t22+P[17][5]*t2*t27); Kfusion[18] = t78*(P[18][0]*t2*t5-P[18][4]*t2*t7+P[18][1]*t2*t15+P[18][6]*t2*t10+P[18][2]*t2*t19-P[18][3]*t2*t22+P[18][5]*t2*t27); Kfusion[19] = t78*(P[19][0]*t2*t5-P[19][4]*t2*t7+P[19][1]*t2*t15+P[19][6]*t2*t10+P[19][2]*t2*t19-P[19][3]*t2*t22+P[19][5]*t2*t27); Kfusion[20] = t78*(P[20][0]*t2*t5-P[20][4]*t2*t7+P[20][1]*t2*t15+P[20][6]*t2*t10+P[20][2]*t2*t19-P[20][3]*t2*t22+P[20][5]*t2*t27); Kfusion[21] = t78*(P[21][0]*t2*t5-P[21][4]*t2*t7+P[21][1]*t2*t15+P[21][6]*t2*t10+P[21][2]*t2*t19-P[21][3]*t2*t22+P[21][5]*t2*t27); } else { // zero indexes 16 to 21 zero_range(&Kfusion[0], 16, 21); } if (!inhibitWindStates && !treatWindStatesAsTruth) { Kfusion[22] = t78*(P[22][0]*t2*t5-P[22][4]*t2*t7+P[22][1]*t2*t15+P[22][6]*t2*t10+P[22][2]*t2*t19-P[22][3]*t2*t22+P[22][5]*t2*t27); Kfusion[23] = t78*(P[23][0]*t2*t5-P[23][4]*t2*t7+P[23][1]*t2*t15+P[23][6]*t2*t10+P[23][2]*t2*t19-P[23][3]*t2*t22+P[23][5]*t2*t27); } else { // zero indexes 22 to 23 zero_range(&Kfusion[0], 22, 23); } } else { // calculate Y axis observation Jacobian ftype t2 = 1.0f / range; H_LOS[0] = -t2*(q2*vd*-2.0f+q3*ve*2.0f+q0*vn*2.0f); H_LOS[1] = -t2*(q3*vd*2.0f+q2*ve*2.0f+q1*vn*2.0f); H_LOS[2] = t2*(q0*vd*2.0f-q1*ve*2.0f+q2*vn*2.0f); H_LOS[3] = -t2*(q1*vd*2.0f+q0*ve*2.0f-q3*vn*2.0f); H_LOS[4] = -t2*(q0*q0+q1*q1-q2*q2-q3*q3); H_LOS[5] = -t2*(q0*q3*2.0f+q1*q2*2.0f); H_LOS[6] = t2*(q0*q2*2.0f-q1*q3*2.0f); // calculate intermediate variables for the Y observation innovation variance and Kalman gains ftype t3 = q3*ve*2.0f; ftype t4 = q0*vn*2.0f; ftype t11 = q2*vd*2.0f; ftype t5 = t3+t4-t11; ftype t6 = q0*q3*2.0f; ftype t7 = q1*q2*2.0f; ftype t8 = t6+t7; ftype t9 = q0*q2*2.0f; ftype t28 = q1*q3*2.0f; ftype t10 = t9-t28; ftype t12 = P[0][0]*t2*t5; ftype t13 = q3*vd*2.0f; ftype t14 = q2*ve*2.0f; ftype t15 = q1*vn*2.0f; ftype t16 = t13+t14+t15; ftype t17 = q0*vd*2.0f; ftype t18 = q2*vn*2.0f; ftype t29 = q1*ve*2.0f; ftype t19 = t17+t18-t29; ftype t20 = q1*vd*2.0f; ftype t21 = q0*ve*2.0f; ftype t30 = q3*vn*2.0f; ftype t22 = t20+t21-t30; ftype t23 = q0*q0; ftype t24 = q1*q1; ftype t25 = q2*q2; ftype t26 = q3*q3; ftype t27 = t23+t24-t25-t26; ftype t31 = P[1][1]*t2*t16; ftype t32 = P[5][0]*t2*t8; ftype t33 = P[1][0]*t2*t16; ftype t34 = P[3][0]*t2*t22; ftype t35 = P[4][0]*t2*t27; ftype t80 = P[6][0]*t2*t10; ftype t81 = P[2][0]*t2*t19; ftype t36 = t12+t32+t33+t34+t35-t80-t81; ftype t37 = t2*t5*t36; ftype t38 = P[5][1]*t2*t8; ftype t39 = P[0][1]*t2*t5; ftype t40 = P[3][1]*t2*t22; ftype t41 = P[4][1]*t2*t27; ftype t82 = P[6][1]*t2*t10; ftype t83 = P[2][1]*t2*t19; ftype t42 = t31+t38+t39+t40+t41-t82-t83; ftype t43 = t2*t16*t42; ftype t44 = P[5][2]*t2*t8; ftype t45 = P[0][2]*t2*t5; ftype t46 = P[1][2]*t2*t16; ftype t47 = P[3][2]*t2*t22; ftype t48 = P[4][2]*t2*t27; ftype t79 = P[2][2]*t2*t19; ftype t84 = P[6][2]*t2*t10; ftype t49 = t44+t45+t46+t47+t48-t79-t84; ftype t50 = P[5][3]*t2*t8; ftype t51 = P[0][3]*t2*t5; ftype t52 = P[1][3]*t2*t16; ftype t53 = P[3][3]*t2*t22; ftype t54 = P[4][3]*t2*t27; ftype t86 = P[6][3]*t2*t10; ftype t87 = P[2][3]*t2*t19; ftype t55 = t50+t51+t52+t53+t54-t86-t87; ftype t56 = t2*t22*t55; ftype t57 = P[5][4]*t2*t8; ftype t58 = P[0][4]*t2*t5; ftype t59 = P[1][4]*t2*t16; ftype t60 = P[3][4]*t2*t22; ftype t61 = P[4][4]*t2*t27; ftype t88 = P[6][4]*t2*t10; ftype t89 = P[2][4]*t2*t19; ftype t62 = t57+t58+t59+t60+t61-t88-t89; ftype t63 = t2*t27*t62; ftype t64 = P[5][5]*t2*t8; ftype t65 = P[0][5]*t2*t5; ftype t66 = P[1][5]*t2*t16; ftype t67 = P[3][5]*t2*t22; ftype t68 = P[4][5]*t2*t27; ftype t90 = P[6][5]*t2*t10; ftype t91 = P[2][5]*t2*t19; ftype t69 = t64+t65+t66+t67+t68-t90-t91; ftype t70 = t2*t8*t69; ftype t71 = P[5][6]*t2*t8; ftype t72 = P[0][6]*t2*t5; ftype t73 = P[1][6]*t2*t16; ftype t74 = P[3][6]*t2*t22; ftype t75 = P[4][6]*t2*t27; ftype t92 = P[6][6]*t2*t10; ftype t93 = P[2][6]*t2*t19; ftype t76 = t71+t72+t73+t74+t75-t92-t93; ftype t85 = t2*t19*t49; ftype t94 = t2*t10*t76; ftype t77 = R_LOS+t37+t43+t56+t63+t70-t85-t94; ftype t78; // calculate innovation variance for Y axis observation and protect against a badly conditioned calculation if (t77 > R_LOS) { t78 = 1.0f/t77; faultStatus.bad_yflow = false; } else { t77 = R_LOS; t78 = 1.0f/R_LOS; faultStatus.bad_yflow = true; return; } flowVarInnov[1] = t77; // calculate innovation for Y observation flowInnov[1] = losPred[1] - ofDataDelayed.flowRadXYcomp.y; flowInnovTime_ms = dal.millis(); // calculate Kalman gains for the Y-axis observation Kfusion[0] = -t78*(t12+P[0][5]*t2*t8-P[0][6]*t2*t10+P[0][1]*t2*t16-P[0][2]*t2*t19+P[0][3]*t2*t22+P[0][4]*t2*t27); Kfusion[1] = -t78*(t31+P[1][0]*t2*t5+P[1][5]*t2*t8-P[1][6]*t2*t10-P[1][2]*t2*t19+P[1][3]*t2*t22+P[1][4]*t2*t27); Kfusion[2] = -t78*(-t79+P[2][0]*t2*t5+P[2][5]*t2*t8-P[2][6]*t2*t10+P[2][1]*t2*t16+P[2][3]*t2*t22+P[2][4]*t2*t27); Kfusion[3] = -t78*(t53+P[3][0]*t2*t5+P[3][5]*t2*t8-P[3][6]*t2*t10+P[3][1]*t2*t16-P[3][2]*t2*t19+P[3][4]*t2*t27); Kfusion[4] = -t78*(t61+P[4][0]*t2*t5+P[4][5]*t2*t8-P[4][6]*t2*t10+P[4][1]*t2*t16-P[4][2]*t2*t19+P[4][3]*t2*t22); Kfusion[5] = -t78*(t64+P[5][0]*t2*t5-P[5][6]*t2*t10+P[5][1]*t2*t16-P[5][2]*t2*t19+P[5][3]*t2*t22+P[5][4]*t2*t27); Kfusion[6] = -t78*(-t92+P[6][0]*t2*t5+P[6][5]*t2*t8+P[6][1]*t2*t16-P[6][2]*t2*t19+P[6][3]*t2*t22+P[6][4]*t2*t27); Kfusion[7] = -t78*(P[7][0]*t2*t5+P[7][5]*t2*t8-P[7][6]*t2*t10+P[7][1]*t2*t16-P[7][2]*t2*t19+P[7][3]*t2*t22+P[7][4]*t2*t27); Kfusion[8] = -t78*(P[8][0]*t2*t5+P[8][5]*t2*t8-P[8][6]*t2*t10+P[8][1]*t2*t16-P[8][2]*t2*t19+P[8][3]*t2*t22+P[8][4]*t2*t27); Kfusion[9] = -t78*(P[9][0]*t2*t5+P[9][5]*t2*t8-P[9][6]*t2*t10+P[9][1]*t2*t16-P[9][2]*t2*t19+P[9][3]*t2*t22+P[9][4]*t2*t27); if (!inhibitDelAngBiasStates) { Kfusion[10] = -t78*(P[10][0]*t2*t5+P[10][5]*t2*t8-P[10][6]*t2*t10+P[10][1]*t2*t16-P[10][2]*t2*t19+P[10][3]*t2*t22+P[10][4]*t2*t27); Kfusion[11] = -t78*(P[11][0]*t2*t5+P[11][5]*t2*t8-P[11][6]*t2*t10+P[11][1]*t2*t16-P[11][2]*t2*t19+P[11][3]*t2*t22+P[11][4]*t2*t27); Kfusion[12] = -t78*(P[12][0]*t2*t5+P[12][5]*t2*t8-P[12][6]*t2*t10+P[12][1]*t2*t16-P[12][2]*t2*t19+P[12][3]*t2*t22+P[12][4]*t2*t27); } else { // zero indexes 10 to 12 zero_range(&Kfusion[0], 10, 12); } if (!inhibitDelVelBiasStates && !badIMUdata) { for (uint8_t index = 0; index < 3; index++) { const uint8_t stateIndex = index + 13; if (!dvelBiasAxisInhibit[index]) { Kfusion[stateIndex] = -t78*(P[stateIndex][0]*t2*t5+P[stateIndex][5]*t2*t8-P[stateIndex][6]*t2*t10+P[stateIndex][1]*t2*t16-P[stateIndex][2]*t2*t19+P[stateIndex][3]*t2*t22+P[stateIndex][4]*t2*t27); } else { Kfusion[stateIndex] = 0.0f; } } } else { // zero indexes 13 to 15 zero_range(&Kfusion[0], 13, 15); } if (!inhibitMagStates) { Kfusion[16] = -t78*(P[16][0]*t2*t5+P[16][5]*t2*t8-P[16][6]*t2*t10+P[16][1]*t2*t16-P[16][2]*t2*t19+P[16][3]*t2*t22+P[16][4]*t2*t27); Kfusion[17] = -t78*(P[17][0]*t2*t5+P[17][5]*t2*t8-P[17][6]*t2*t10+P[17][1]*t2*t16-P[17][2]*t2*t19+P[17][3]*t2*t22+P[17][4]*t2*t27); Kfusion[18] = -t78*(P[18][0]*t2*t5+P[18][5]*t2*t8-P[18][6]*t2*t10+P[18][1]*t2*t16-P[18][2]*t2*t19+P[18][3]*t2*t22+P[18][4]*t2*t27); Kfusion[19] = -t78*(P[19][0]*t2*t5+P[19][5]*t2*t8-P[19][6]*t2*t10+P[19][1]*t2*t16-P[19][2]*t2*t19+P[19][3]*t2*t22+P[19][4]*t2*t27); Kfusion[20] = -t78*(P[20][0]*t2*t5+P[20][5]*t2*t8-P[20][6]*t2*t10+P[20][1]*t2*t16-P[20][2]*t2*t19+P[20][3]*t2*t22+P[20][4]*t2*t27); Kfusion[21] = -t78*(P[21][0]*t2*t5+P[21][5]*t2*t8-P[21][6]*t2*t10+P[21][1]*t2*t16-P[21][2]*t2*t19+P[21][3]*t2*t22+P[21][4]*t2*t27); } else { // zero indexes 16 to 21 zero_range(&Kfusion[0], 16, 21); } if (!inhibitWindStates && !treatWindStatesAsTruth) { Kfusion[22] = -t78*(P[22][0]*t2*t5+P[22][5]*t2*t8-P[22][6]*t2*t10+P[22][1]*t2*t16-P[22][2]*t2*t19+P[22][3]*t2*t22+P[22][4]*t2*t27); Kfusion[23] = -t78*(P[23][0]*t2*t5+P[23][5]*t2*t8-P[23][6]*t2*t10+P[23][1]*t2*t16-P[23][2]*t2*t19+P[23][3]*t2*t22+P[23][4]*t2*t27); } else { // zero indexes 22 to 23 zero_range(&Kfusion[0], 22, 23); } } // calculate the innovation consistency test ratio flowTestRatio[obsIndex] = sq(flowInnov[obsIndex]) / (sq(MAX(0.01f * (ftype)frontend->_flowInnovGate, 1.0f)) * flowVarInnov[obsIndex]); // Check the innovation for consistency and don't fuse if out of bounds or flow is too fast to be reliable if (really_fuse && (flowTestRatio[obsIndex]) < 1.0f && (ofDataDelayed.flowRadXY.x < frontend->_maxFlowRate) && (ofDataDelayed.flowRadXY.y < frontend->_maxFlowRate)) { // record the last time observations were accepted for fusion prevFlowFuseTime_ms = imuSampleTime_ms; // notify first time only if (!flowFusionActive) { flowFusionActive = true; GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF3 IMU%u fusing optical flow",(unsigned)imu_index); } // correct the covariance P = (I - K*H)*P // take advantage of the empty columns in KH to reduce the // number of operations for (uint8_t i = 0; i<=stateIndexLim; i++) { for (uint8_t j = 0; j<=6; j++) { KH[i][j] = Kfusion[i] * H_LOS[j]; } for (uint8_t j = 7; j<=stateIndexLim; j++) { KH[i][j] = 0.0f; } } for (uint8_t j = 0; j<=stateIndexLim; j++) { for (uint8_t i = 0; i<=stateIndexLim; i++) { ftype res = 0; res += KH[i][0] * P[0][j]; res += KH[i][1] * P[1][j]; res += KH[i][2] * P[2][j]; res += KH[i][3] * P[3][j]; res += KH[i][4] * P[4][j]; res += KH[i][5] * P[5][j]; res += KH[i][6] * P[6][j]; KHP[i][j] = res; } } // Check that we are not going to drive any variances negative and skip the update if so bool healthyFusion = true; for (uint8_t i= 0; i<=stateIndexLim; i++) { if (KHP[i][i] > P[i][i]) { healthyFusion = false; } } if (healthyFusion) { // update the covariance matrix for (uint8_t i= 0; i<=stateIndexLim; i++) { for (uint8_t j= 0; j<=stateIndexLim; j++) { P[i][j] = P[i][j] - KHP[i][j]; } } // force the covariance matrix to be symmetrical and limit the variances to prevent ill-conditioning. ForceSymmetry(); ConstrainVariances(); // correct the state vector for (uint8_t j= 0; j<=stateIndexLim; j++) { statesArray[j] = statesArray[j] - Kfusion[j] * flowInnov[obsIndex]; } stateStruct.quat.normalize(); } else { // record bad axis if (obsIndex == 0) { faultStatus.bad_xflow = true; } else if (obsIndex == 1) { faultStatus.bad_yflow = true; } } } } // store optical flow rates for use in external calibration flowCalSample.timestamp_ms = imuSampleTime_ms; flowCalSample.flowRate.x = ofDataDelayed.flowRadXY.x; flowCalSample.flowRate.y = ofDataDelayed.flowRadXY.y; flowCalSample.bodyRate.x = ofDataDelayed.bodyRadXYZ.x; flowCalSample.bodyRate.y = ofDataDelayed.bodyRadXYZ.y; flowCalSample.losPred.x = losPred[0]; flowCalSample.losPred.y = losPred[1]; } // retrieve latest corrected optical flow samples (used for calibration) bool NavEKF3_core::getOptFlowSample(uint32_t& timestamp_ms, Vector2f& flowRate, Vector2f& bodyRate, Vector2f& losPred) const { if (flowCalSample.timestamp_ms != 0) { timestamp_ms = flowCalSample.timestamp_ms; flowRate = flowCalSample.flowRate; bodyRate = flowCalSample.bodyRate; losPred = flowCalSample.losPred; return true; } return false; } /******************************************************** * MISC FUNCTIONS * ********************************************************/ #endif // EK3_FEATURE_OPTFLOW_FUSION