// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // // This is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License as published by the // Free Software Foundation; either version 2.1 of the License, or (at // your option) any later version. // // total up and check overflow // check size of group var_info /// @file AP_Param.cpp /// @brief The AP variable store. #include #include #include #include // #define ENABLE_FASTSERIAL_DEBUG #ifdef ENABLE_FASTSERIAL_DEBUG # define serialDebug(fmt, args...) if (FastSerial::getInitialized(0)) do {Serial.printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__ , ##args); delay(0); } while(0) #else # define serialDebug(fmt, args...) #endif // Static member variables for AP_Param. // // max EEPROM write size. This is usually less than the physical // size as only part of the EEPROM is reserved for parameters uint16_t AP_Param::_eeprom_size; // number of rows in the _var_info[] table uint16_t AP_Param::_num_vars; // storage and naming information about all types that can be saved const AP_Param::Info *AP_Param::_var_info; // write to EEPROM, checking each byte to avoid writing // bytes that are already correct void AP_Param::eeprom_write_check(const void *ptr, uint16_t ofs, uint8_t size) { const uint8_t *b = (const uint8_t *)ptr; while (size--) { uint8_t v = eeprom_read_byte((const uint8_t *)ofs); if (v != *b) { eeprom_write_byte((uint8_t *)ofs, *b); } b++; ofs++; } } // write a sentinal value at the given offset void AP_Param::write_sentinal(uint16_t ofs) { struct Param_header phdr; phdr.type = AP_PARAM_NONE; phdr.key = 0; phdr.group_element = 0; eeprom_write_check(&phdr, ofs, sizeof(phdr)); } // erase all EEPROM variables by re-writing the header and adding // a sentinal void AP_Param::erase_all(void) { struct EEPROM_header hdr; serialDebug("erase_all"); // write the header hdr.magic = k_EEPROM_magic; hdr.revision = k_EEPROM_revision; hdr.spare = 0; eeprom_write_check(&hdr, 0, sizeof(hdr)); // add a sentinal directly after the header write_sentinal(sizeof(struct EEPROM_header)); } // validate a group info table bool AP_Param::check_group_info(const struct AP_Param::GroupInfo *group_info, uint16_t *total_size, uint8_t group_shift) { uint8_t type; for (uint8_t i=0; (type=pgm_read_byte(&group_info[i].type)) != AP_PARAM_NONE; i++) { if (type == AP_PARAM_GROUP) { // a nested group const struct GroupInfo *ginfo = (const struct GroupInfo *)pgm_read_pointer(&group_info[i].group_info); if (group_shift + _group_level_shift >= _group_bits) { // double nesting of groups is not allowed return false; } if (ginfo == NULL || !check_group_info(ginfo, total_size, group_shift + _group_level_shift)) { return false; } continue; } if (type == AP_PARAM_SPARE) { // a placeholder for a removed entry continue; } if (i >= (1<<_group_level_shift)) { // passed limit on table size return false; } uint8_t size = type_size((enum ap_var_type)type); if (size == 0) { // not a valid type return false; } (*total_size) += size + sizeof(struct Param_header); } return true; } // validate the _var_info[] table bool AP_Param::check_var_info(void) { uint16_t total_size = sizeof(struct EEPROM_header); for (uint16_t i=0; i<_num_vars; i++) { uint8_t type = pgm_read_byte(&_var_info[i].type); if (type == AP_PARAM_GROUP) { if (i == 0) { // first element can't be a group, for first() call return false; } const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info); if (group_info == NULL || !check_group_info(group_info, &total_size, 0)) { return false; } } else { uint8_t size = type_size((enum ap_var_type)type); if (size == 0) { // not a valid type - the top level list can't contain AP_PARAM_NONE return false; } total_size += size + sizeof(struct Param_header); } } if (total_size > _eeprom_size) { serialDebug("total_size %u exceeds _eeprom_size %u", total_size, _eeprom_size); return false; } return true; } // setup the _var_info[] table bool AP_Param::setup(const AP_Param::Info *info, uint16_t num_vars, uint16_t eeprom_size) { struct EEPROM_header hdr; _eeprom_size = eeprom_size; _var_info = info; _num_vars = num_vars; if (!check_var_info()) { return false; } serialDebug("setup %u vars", (unsigned)num_vars); // check the header eeprom_read_block(&hdr, 0, sizeof(hdr)); if (hdr.magic != k_EEPROM_magic || hdr.revision != k_EEPROM_revision) { // header doesn't match. We can't recover any variables. Wipe // the header and setup the sentinal directly after the header serialDebug("bad header in setup - erasing"); erase_all(); } return true; } #define GROUP_OFFSET(base, i, shift) ((base)+(((uint16_t)i)<<(shift))) // find the info structure given a header and a group_info table // return the Info structure and a pointer to the variables storage const struct AP_Param::Info *AP_Param::find_by_header_group(struct Param_header phdr, void **ptr, uint8_t vindex, const struct GroupInfo *group_info, uint8_t group_base, uint8_t group_shift) { uint8_t type; for (uint8_t i=0; (type=pgm_read_byte(&group_info[i].type)) != AP_PARAM_NONE; i++) { if (type == AP_PARAM_GROUP) { // a nested group if (group_shift + _group_level_shift >= _group_bits) { // too deeply nested - this should have been caught by // setup() ! return NULL; } const struct GroupInfo *ginfo = (const struct GroupInfo *)pgm_read_pointer(&group_info[i].group_info); const struct AP_Param::Info *ret = find_by_header_group(phdr, ptr, vindex, ginfo, GROUP_OFFSET(group_base, i, group_shift), group_shift + _group_level_shift); if (ret != NULL) { return ret; } continue; } if (type == AP_PARAM_SPARE) { continue; } if (GROUP_OFFSET(group_base, i, group_shift) == phdr.group_element) { // found a group element *ptr = (void*)(pgm_read_pointer(&_var_info[vindex].ptr) + pgm_read_word(&group_info[i].offset)); return &_var_info[vindex]; } } return NULL; } // find the info structure given a header // return the Info structure and a pointer to the variables storage const struct AP_Param::Info *AP_Param::find_by_header(struct Param_header phdr, void **ptr) { // loop over all named variables for (uint16_t i=0; i<_num_vars; i++) { uint8_t type = pgm_read_byte(&_var_info[i].type); uint16_t key = pgm_read_word(&_var_info[i].key); if (key != phdr.key) { // not the right key continue; } if (type != AP_PARAM_GROUP) { // if its not a group then we are done *ptr = (void*)pgm_read_pointer(&_var_info[i].ptr); return &_var_info[i]; } const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info); return find_by_header_group(phdr, ptr, i, group_info, 0, 0); } return NULL; } // find the info structure for a variable in a group const struct AP_Param::Info *AP_Param::find_var_info_group(const struct GroupInfo *group_info, uint8_t vindex, uint8_t group_base, uint8_t group_shift, uint8_t *group_element, const struct GroupInfo **group_ret) { uintptr_t base = pgm_read_pointer(&_var_info[vindex].ptr); uint8_t type; for (uint8_t i=0; (type=pgm_read_byte(&group_info[i].type)) != AP_PARAM_NONE; i++) { if (type == AP_PARAM_GROUP) { const struct GroupInfo *ginfo = (const struct GroupInfo *)pgm_read_pointer(&group_info[i].group_info); // a nested group if (group_shift + _group_level_shift >= _group_bits) { // too deeply nested - this should have been caught by // setup() ! return NULL; } const struct AP_Param::Info *info; info = find_var_info_group(ginfo, vindex, GROUP_OFFSET(group_base, i, group_shift), group_shift + _group_level_shift, group_element, group_ret); if (info != NULL) { return info; } } else if ((uintptr_t)this == base + pgm_read_pointer(&group_info[i].offset)) { *group_element = GROUP_OFFSET(group_base, i, group_shift); *group_ret = &group_info[i]; return &_var_info[vindex]; } } return NULL; } // find the info structure for a variable const struct AP_Param::Info *AP_Param::find_var_info(uint8_t *group_element, const struct GroupInfo **group_ret) { for (uint16_t i=0; i<_num_vars; i++) { uint8_t type = pgm_read_byte(&_var_info[i].type); uintptr_t base = pgm_read_pointer(&_var_info[i].ptr); if (type == AP_PARAM_GROUP) { const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info); const struct AP_Param::Info *info; info = find_var_info_group(group_info, i, 0, 0, group_element, group_ret); if (info != NULL) { return info; } } else if (base == (uintptr_t)this) { *group_element = 0; *group_ret = NULL; return &_var_info[i]; } } return NULL; } // return the storage size for a AP_PARAM_* type const uint8_t AP_Param::type_size(enum ap_var_type type) { switch (type) { case AP_PARAM_NONE: case AP_PARAM_SPARE: case AP_PARAM_GROUP: return 0; case AP_PARAM_INT8: return 1; case AP_PARAM_INT16: return 2; case AP_PARAM_INT32: return 4; case AP_PARAM_FLOAT: return 4; case AP_PARAM_VECTOR3F: return 3*4; case AP_PARAM_VECTOR6F: return 6*4; case AP_PARAM_MATRIX3F: return 3*3*4; } serialDebug("unknown type %u\n", type); return 0; } // scan the EEPROM looking for a given variable by header content // return true if found, along with the offset in the EEPROM where // the variable is stored // if not found return the offset of the sentinal, or bool AP_Param::scan(const AP_Param::Param_header *target, uint16_t *pofs) { struct Param_header phdr; uint16_t ofs = sizeof(AP_Param::EEPROM_header); while (ofs < _eeprom_size) { eeprom_read_block(&phdr, (const void *)ofs, sizeof(phdr)); if (phdr.type == target->type && phdr.key == target->key && phdr.group_element == target->group_element) { // found it *pofs = ofs; return true; } if (phdr.type == AP_PARAM_NONE && phdr.key == 0) { // we've reached the sentinal *pofs = ofs; return false; } ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr); } *pofs = ~0; serialDebug("scan past end of eeprom"); return false; } // Copy the variable's whole name to the supplied buffer. // // If the variable is a group member, prepend the group name. // void AP_Param::copy_name(char *buffer, size_t buffer_size) { uint8_t group_element; const struct GroupInfo *ginfo; const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo); if (info == NULL) { *buffer = 0; serialDebug("no info found"); return; } strncpy_P(buffer, info->name, buffer_size); if (ginfo != NULL) { uint8_t len = strnlen(buffer, buffer_size); if (len < buffer_size) { strncpy_P(&buffer[len], ginfo->name, buffer_size-len); } } } // Find a variable by name in a group AP_Param * AP_Param::find_group(const char *name, uint8_t vindex, const struct GroupInfo *group_info, enum ap_var_type *ptype) { uint8_t type; for (uint8_t i=0; (type=pgm_read_byte(&group_info[i].type)) != AP_PARAM_NONE; i++) { if (type == AP_PARAM_GROUP) { const struct GroupInfo *ginfo = (const struct GroupInfo *)pgm_read_pointer(&group_info[i].group_info); AP_Param *ap = find_group(name, vindex, ginfo, ptype); if (ap != NULL) { return ap; } } else if (strcasecmp_P(name, group_info[i].name) == 0) { uintptr_t p = pgm_read_pointer(&_var_info[vindex].ptr); *ptype = (enum ap_var_type)type; return (AP_Param *)(p + pgm_read_pointer(&group_info[i].offset)); } } return NULL; } // Find a variable by name. // AP_Param * AP_Param::find(const char *name, enum ap_var_type *ptype) { for (uint16_t i=0; i<_num_vars; i++) { uint8_t type = pgm_read_byte(&_var_info[i].type); if (type == AP_PARAM_GROUP) { uint8_t len = strnlen_P(_var_info[i].name, AP_MAX_NAME_SIZE); if (strncmp_P(name, _var_info[i].name, len) != 0) { continue; } const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info); return find_group(name + len, i, group_info, ptype); } else if (strcasecmp_P(name, _var_info[i].name) == 0) { *ptype = (enum ap_var_type)type; return (AP_Param *)pgm_read_pointer(&_var_info[i].ptr); } } return NULL; } // Save the variable to EEPROM, if supported // bool AP_Param::save(void) { uint8_t group_element; const struct GroupInfo *ginfo; const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo); if (info == NULL) { // we don't have any info on how to store it return false; } struct Param_header phdr; // create the header we will use to store the variable if (ginfo != NULL) { phdr.type = pgm_read_byte(&ginfo->type); phdr.key = pgm_read_word(&info->key); phdr.group_element = group_element; } else { phdr.type = pgm_read_byte(&info->type); phdr.key = pgm_read_word(&info->key); phdr.group_element = 0; } // scan EEPROM to find the right location uint16_t ofs; if (scan(&phdr, &ofs)) { // found an existing copy of the variable eeprom_write_check(this, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type)); return true; } if (ofs == (uint16_t)~0) { return false; } // write a new sentinal, then the data, then the header write_sentinal(ofs + sizeof(phdr) + type_size((enum ap_var_type)phdr.type)); eeprom_write_check(this, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type)); eeprom_write_check(&phdr, ofs, sizeof(phdr)); return true; } // Load the variable from EEPROM, if supported // bool AP_Param::load(void) { uint8_t group_element; const struct GroupInfo *ginfo; const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo); if (info == NULL) { // we don't have any info on how to load it return false; } struct Param_header phdr; // create the header we will use to match the variable if (ginfo != NULL) { phdr.type = pgm_read_byte(&ginfo->type); phdr.key = pgm_read_word(&info->key); phdr.group_element = group_element; } else { phdr.type = pgm_read_byte(&info->type); phdr.key = pgm_read_word(&info->key); phdr.group_element = 0; } // scan EEPROM to find the right location uint16_t ofs; if (!scan(&phdr, &ofs)) { return false; } // found it eeprom_read_block(this, (void*)(ofs+sizeof(phdr)), type_size((enum ap_var_type)phdr.type)); return true; } // Load all variables from EEPROM // bool AP_Param::load_all(void) { struct Param_header phdr; uint16_t ofs = sizeof(AP_Param::EEPROM_header); while (ofs < _eeprom_size) { eeprom_read_block(&phdr, (const void *)ofs, sizeof(phdr)); if (phdr.type == AP_PARAM_NONE && phdr.key == 0) { // we've reached the sentinal return true; } const struct AP_Param::Info *info; void *ptr; info = find_by_header(phdr, &ptr); if (info != NULL) { eeprom_read_block(ptr, (void*)(ofs+sizeof(phdr)), type_size((enum ap_var_type)phdr.type)); } ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr); } // we didn't find the sentinal serialDebug("no sentinal in load_all"); return false; } // return the first variable in _var_info AP_Param *AP_Param::first(uint32_t *token, enum ap_var_type *ptype) { *token = 0; if (_num_vars == 0) { return NULL; } if (ptype != NULL) { *ptype = (enum ap_var_type)pgm_read_byte(&_var_info[0].type); } return (AP_Param *)(pgm_read_pointer(&_var_info[0].ptr)); } /// Returns the next variable in a group, recursing into groups /// as needed AP_Param *AP_Param::next_group(uint8_t vindex, const struct GroupInfo *group_info, bool *found_current, uint8_t group_base, uint8_t group_shift, uint32_t *token, enum ap_var_type *ptype) { uint8_t type; for (uint8_t i=0; (type=pgm_read_byte(&group_info[i].type)) != AP_PARAM_NONE; i++) { if (type == AP_PARAM_GROUP) { // a nested group const struct GroupInfo *ginfo = (const struct GroupInfo *)pgm_read_pointer(&group_info[i].group_info); AP_Param *ap; ap = next_group(vindex, ginfo, found_current, GROUP_OFFSET(group_base, i, group_shift), group_shift + _group_level_shift, token, ptype); if (ap != NULL) { return ap; } } else { if (*found_current) { // got a new one (*token) = ((uint32_t)GROUP_OFFSET(group_base, i, group_shift)<<16) | vindex; if (ptype != NULL) { *ptype = (enum ap_var_type)type; } return (AP_Param*)(pgm_read_pointer(&_var_info[vindex].ptr) + pgm_read_word(&group_info[i].offset)); } if (GROUP_OFFSET(group_base, i, group_shift) == (*token)>>16) { *found_current = true; } } } return NULL; } /// Returns the next variable in _var_info, recursing into groups /// as needed AP_Param *AP_Param::next(uint32_t *token, enum ap_var_type *ptype) { uint16_t i = (*token)&0xFFFF; bool found_current = false; if (i >= _num_vars) { // illegal token return NULL; } uint8_t type = pgm_read_byte(&_var_info[i].type); if (type != AP_PARAM_GROUP) { i++; found_current = true; } for (; i<_num_vars; i++) { type = pgm_read_byte(&_var_info[i].type); if (type == AP_PARAM_GROUP) { const struct GroupInfo *group_info = (const struct GroupInfo *)pgm_read_pointer(&_var_info[i].group_info); AP_Param *ap = next_group(i, group_info, &found_current, 0, 0, token, ptype); if (ap != NULL) { return ap; } } else { // found the next one (*token) = i; if (ptype != NULL) { *ptype = (enum ap_var_type)type; } return (AP_Param *)(pgm_read_pointer(&_var_info[i].ptr)); } } return NULL; } /// Returns the next scalar in _var_info, recursing into groups /// as needed AP_Param *AP_Param::next_scalar(uint32_t *token, enum ap_var_type *ptype) { AP_Param *ap; enum ap_var_type type; while ((ap = next(token, &type)) != NULL && type > AP_PARAM_FLOAT) ; if (ap != NULL && ptype != NULL) { *ptype = type; } return ap; } /// cast a variable to a float given its type float AP_Param::cast_to_float(enum ap_var_type type) { switch (type) { case AP_PARAM_INT8: return ((AP_Int8 *)this)->cast_to_float(); case AP_PARAM_INT16: return ((AP_Int16 *)this)->cast_to_float(); case AP_PARAM_INT32: return ((AP_Int32 *)this)->cast_to_float(); case AP_PARAM_FLOAT: return ((AP_Float *)this)->cast_to_float(); default: return NAN; } }