/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AC_Avoid.h" #include // AHRS library #include // Failsafe fence library #include #include #include #include #if APM_BUILD_TYPE(APM_BUILD_Rover) # define AP_AVOID_BEHAVE_DEFAULT AC_Avoid::BehaviourType::BEHAVIOR_STOP #else # define AP_AVOID_BEHAVE_DEFAULT AC_Avoid::BehaviourType::BEHAVIOR_SLIDE #endif #if APM_BUILD_TYPE(APM_BUILD_ArduCopter) # define AP_AVOID_ENABLE_Z 1 #endif const AP_Param::GroupInfo AC_Avoid::var_info[] = { // @Param: ENABLE // @DisplayName: Avoidance control enable/disable // @Description: Enabled/disable avoidance input sources // @Values: 0:None,1:UseFence,2:UseProximitySensor,3:UseFence and UseProximitySensor,4:UseBeaconFence,7:All // @Bitmask: 0:UseFence,1:UseProximitySensor,2:UseBeaconFence // @User: Standard AP_GROUPINFO_FLAGS("ENABLE", 1, AC_Avoid, _enabled, AC_AVOID_DEFAULT, AP_PARAM_FLAG_ENABLE), // @Param{Copter}: ANGLE_MAX // @DisplayName: Avoidance max lean angle in non-GPS flight modes // @Description: Max lean angle used to avoid obstacles while in non-GPS modes // @Units: cdeg // @Increment: 10 // @Range: 0 4500 // @User: Standard AP_GROUPINFO_FRAME("ANGLE_MAX", 2, AC_Avoid, _angle_max, 1000, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER), // @Param{Copter}: DIST_MAX // @DisplayName: Avoidance distance maximum in non-GPS flight modes // @Description: Distance from object at which obstacle avoidance will begin in non-GPS modes // @Units: m // @Range: 1 30 // @User: Standard AP_GROUPINFO_FRAME("DIST_MAX", 3, AC_Avoid, _dist_max, AC_AVOID_NONGPS_DIST_MAX_DEFAULT, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER), // @Param: MARGIN // @DisplayName: Avoidance distance margin in GPS modes // @Description: Vehicle will attempt to stay at least this distance (in meters) from objects while in GPS modes // @Units: m // @Range: 1 10 // @User: Standard AP_GROUPINFO("MARGIN", 4, AC_Avoid, _margin, 2.0f), // @Param{Copter}: BEHAVE // @DisplayName: Avoidance behaviour // @Description: Avoidance behaviour (slide or stop) // @Values: 0:Slide,1:Stop // @User: Standard AP_GROUPINFO_FRAME("BEHAVE", 5, AC_Avoid, _behavior, AP_AVOID_BEHAVE_DEFAULT, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER), // @Param: BACKUP_SPD // @DisplayName: Avoidance maximum backup speed // @Description: Maximum speed that will be used to back away from obstacles in GPS modes (m/s). Set zero to disable // @Units: m/s // @Range: 0 2 // @User: Standard AP_GROUPINFO("BACKUP_SPD", 6, AC_Avoid, _backup_speed_max, 0.75f), // @Param{Copter}: ALT_MIN // @DisplayName: Avoidance minimum altitude // @Description: Minimum altitude above which proximity based avoidance will start working. This requires a valid downward facing rangefinder reading to work. Set zero to disable // @Units: m // @Range: 0 6 // @User: Standard AP_GROUPINFO_FRAME("ALT_MIN", 7, AC_Avoid, _alt_min, 0.0f, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER), // @Param: ACCEL_MAX // @DisplayName: Avoidance maximum acceleration // @Description: Maximum acceleration with which obstacles will be avoided with. Set zero to disable acceleration limits // @Units: m/s/s // @Range: 0 9 // @User: Standard AP_GROUPINFO("ACCEL_MAX", 8, AC_Avoid, _accel_max, 3.0f), // @Param: BACKUP_DZ // @DisplayName: Avoidance deadzone between stopping and backing away from obstacle // @Description: Distance beyond AVOID_MARGIN parameter, after which vehicle will backaway from obstacles. Increase this parameter if you see vehicle going back and forth in front of obstacle. // @Units: m // @Range: 0 2 // @User: Standard AP_GROUPINFO("BACKUP_DZ", 9, AC_Avoid, _backup_deadzone, 0.10f), AP_GROUPEND }; /// Constructor AC_Avoid::AC_Avoid() { _singleton = this; AP_Param::setup_object_defaults(this, var_info); } /* * This method limits velocity and calculates backaway velocity from various supported fences * Also limits vertical velocity using adjust_velocity_z method */ void AC_Avoid::adjust_velocity_fence(float kP, float accel_cmss, Vector3f &desired_vel_cms, Vector3f &backup_vel, float kP_z, float accel_cmss_z, float dt) { // Only horizontal component needed for most fences, since fences are 2D Vector2f desired_velocity_xy_cms{desired_vel_cms.x, desired_vel_cms.y}; // limit acceleration const float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX); // maximum component of desired backup velocity in each quadrant Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel; if ((_enabled & AC_AVOID_STOP_AT_FENCE) > 0) { // Store velocity needed to back away from fence Vector2f backup_vel_fence; adjust_velocity_circle_fence(kP, accel_cmss_limited, desired_velocity_xy_cms, backup_vel_fence, dt); find_max_quadrant_velocity(backup_vel_fence, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel); // backup_vel_fence is set to zero after each fence incase the velocity is unset from previous methods backup_vel_fence.zero(); adjust_velocity_inclusion_and_exclusion_polygons(kP, accel_cmss_limited, desired_velocity_xy_cms, backup_vel_fence, dt); find_max_quadrant_velocity(backup_vel_fence, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel); backup_vel_fence.zero(); adjust_velocity_inclusion_circles(kP, accel_cmss_limited, desired_velocity_xy_cms, backup_vel_fence, dt); find_max_quadrant_velocity(backup_vel_fence, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel); backup_vel_fence.zero(); adjust_velocity_exclusion_circles(kP, accel_cmss_limited, desired_velocity_xy_cms, backup_vel_fence, dt); find_max_quadrant_velocity(backup_vel_fence, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel); } if ((_enabled & AC_AVOID_STOP_AT_BEACON_FENCE) > 0) { // Store velocity needed to back away from beacon fence Vector2f backup_vel_beacon; adjust_velocity_beacon_fence(kP, accel_cmss_limited, desired_velocity_xy_cms, backup_vel_beacon, dt); find_max_quadrant_velocity(backup_vel_beacon, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel); } // check for vertical fence float desired_velocity_z_cms = desired_vel_cms.z; float desired_backup_vel_z = 0.0f; adjust_velocity_z(kP_z, accel_cmss_z, desired_velocity_z_cms, desired_backup_vel_z, dt); // Desired backup velocity is sum of maximum velocity component in each quadrant const Vector2f desired_backup_vel_xy = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; backup_vel = Vector3f{desired_backup_vel_xy.x, desired_backup_vel_xy.y, desired_backup_vel_z}; desired_vel_cms = Vector3f{desired_velocity_xy_cms.x, desired_velocity_xy_cms.y, desired_velocity_z_cms}; } /* * Adjusts the desired velocity so that the vehicle can stop * before the fence/object. * kP, accel_cmss are for the horizontal axis * kP_z, accel_cmss_z are for vertical axis */ void AC_Avoid::adjust_velocity(Vector3f &desired_vel_cms, bool &backing_up, float kP, float accel_cmss, float kP_z, float accel_cmss_z, float dt) { // exit immediately if disabled if (_enabled == AC_AVOID_DISABLED) { return; } // make a copy of input velocity, because desired_vel_cms might be changed const Vector3f desired_vel_cms_original = desired_vel_cms; // limit acceleration const float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX); // maximum component of horizontal desired backup velocity in each quadrant Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel; float back_vel_up = 0.0f; float back_vel_down = 0.0f; // Avoidance in response to proximity sensor if ((_enabled & AC_AVOID_USE_PROXIMITY_SENSOR) > 0 && _proximity_enabled && _proximity_alt_enabled) { // Store velocity needed to back away from physical obstacles Vector3f backup_vel_proximity; adjust_velocity_proximity(kP, accel_cmss_limited, desired_vel_cms, backup_vel_proximity, kP_z,accel_cmss_z, dt); find_max_quadrant_velocity_3D(backup_vel_proximity, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, back_vel_up, back_vel_down); } // Avoidance in response to various fences Vector3f backup_vel_fence; adjust_velocity_fence(kP, accel_cmss, desired_vel_cms, backup_vel_fence, kP_z, accel_cmss_z, dt); find_max_quadrant_velocity_3D(backup_vel_fence , quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, back_vel_up, back_vel_down); // Desired backup velocity is sum of maximum velocity component in each quadrant const Vector2f desired_backup_vel_xy = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; const float desired_backup_vel_z = back_vel_down + back_vel_up; Vector3f desired_backup_vel{desired_backup_vel_xy.x, desired_backup_vel_xy.y, desired_backup_vel_z}; const float max_back_spd_cms = _backup_speed_max * 100.0f; if (!desired_backup_vel.is_zero() && is_positive(max_back_spd_cms)) { backing_up = true; // Constrain backing away speed if (desired_backup_vel.length() > max_back_spd_cms) { desired_backup_vel = desired_backup_vel.normalized() * max_back_spd_cms; } // let user take control if they are backing away at a greater speed than what we have calculated // this has to be done for x,y,z seperately. For eg, user is doing fine in "x" direction but might need backing up in "y". if (!is_zero(desired_backup_vel.x)) { if (is_positive(desired_backup_vel.x)) { desired_vel_cms.x = MAX(desired_vel_cms.x, desired_backup_vel.x); } else { desired_vel_cms.x = MIN(desired_vel_cms.x, desired_backup_vel.x); } } if (!is_zero(desired_backup_vel.y)) { if (is_positive(desired_backup_vel.y)) { desired_vel_cms.y = MAX(desired_vel_cms.y, desired_backup_vel.y); } else { desired_vel_cms.y = MIN(desired_vel_cms.y, desired_backup_vel.y); } } if (!is_zero(desired_backup_vel.z)) { if (is_positive(desired_backup_vel.z)) { desired_vel_cms.z = MAX(desired_vel_cms.z, desired_backup_vel.z); } else { desired_vel_cms.z = MIN(desired_vel_cms.z, desired_backup_vel.z); } } } // limit acceleration limit_accel(desired_vel_cms_original, desired_vel_cms, dt); if (desired_vel_cms_original != desired_vel_cms) { _last_limit_time = AP_HAL::millis(); } if (limits_active()) { // log at not more than 10hz (adjust_velocity method can be potentially called at 400hz!) uint32_t now = AP_HAL::millis(); if ((now - _last_log_ms) > 100) { _last_log_ms = now; Write_SimpleAvoidance(true, desired_vel_cms_original, desired_vel_cms, backing_up); } } else { // avoidance isn't active anymore // log once so that it registers in logs if (_last_log_ms) { Write_SimpleAvoidance(false, desired_vel_cms_original, desired_vel_cms, backing_up); // this makes sure logging won't run again till it is active _last_log_ms = 0; } } } /* * Limit acceleration so that change of velocity output by avoidance library is controlled * This helps reduce jerks and sudden movements in the vehicle */ void AC_Avoid::limit_accel(const Vector3f &original_vel, Vector3f &modified_vel, float dt) { if (original_vel == modified_vel || is_zero(_accel_max) || !is_positive(dt)) { // we can't limit accel if any of these conditions are true return; } if (AP_HAL::millis() - _last_limit_time > AC_AVOID_ACCEL_TIMEOUT_MS) { // reset this velocity because its been a long time since avoidance was active _prev_avoid_vel = original_vel; } // acceleration demanded by avoidance const Vector3f accel = (modified_vel - _prev_avoid_vel)/dt; // max accel in cm const float max_accel_cm = _accel_max * 100.0f; if (accel.length() > max_accel_cm) { // pull back on the acceleration const Vector3f accel_direction = accel.normalized(); modified_vel = (accel_direction * max_accel_cm) * dt + _prev_avoid_vel; } _prev_avoid_vel = modified_vel; return; } // This method is used in most Rover modes and not in Copter // adjust desired horizontal speed so that the vehicle stops before the fence or object // accel (maximum acceleration/deceleration) is in m/s/s // heading is in radians // speed is in m/s // kP should be zero for linear response, non-zero for non-linear response void AC_Avoid::adjust_speed(float kP, float accel, float heading, float &speed, float dt) { // convert heading and speed into velocity vector Vector3f vel{ cosf(heading) * speed * 100.0f, sinf(heading) * speed * 100.0f, 0.0f }; bool backing_up = false; adjust_velocity(vel, backing_up, kP, accel * 100.0f, 0, 0, dt); const Vector2f vel_xy{vel.x, vel.y}; if (backing_up) { // back up if (fabsf(wrap_180(degrees(vel_xy.angle())) - degrees(heading)) > 90.0f) { // Big difference between the direction of velocity vector and actual heading therefore we need to reverse the direction speed = -vel_xy.length() * 0.01f; } else { speed = vel_xy.length() * 0.01f; } return; } // No need to back up so adjust speed towards zero if needed if (is_negative(speed)) { speed = -vel_xy.length() * 0.01f; } else { speed = vel_xy.length() * 0.01f; } } // adjust vertical climb rate so vehicle does not break the vertical fence void AC_Avoid::adjust_velocity_z(float kP, float accel_cmss, float& climb_rate_cms, float& backup_speed, float dt) { #ifdef AP_AVOID_ENABLE_Z // exit immediately if disabled if (_enabled == AC_AVOID_DISABLED) { return; } // do not adjust climb_rate if level or descending if (climb_rate_cms <= 0.0f) { return; } // limit acceleration const float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX); bool limit_alt = false; float alt_diff = 0.0f; // distance from altitude limit to vehicle in metres (positive means vehicle is below limit) const AP_AHRS &_ahrs = AP::ahrs(); // calculate distance below fence AC_Fence *fence = AP::fence(); if ((_enabled & AC_AVOID_STOP_AT_FENCE) > 0 && fence && (fence->get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) > 0) { // calculate distance from vehicle to safe altitude float veh_alt; _ahrs.get_relative_position_D_home(veh_alt); // _fence.get_safe_alt_max() is UP, veh_alt is DOWN: alt_diff = fence->get_safe_alt_max() + veh_alt; limit_alt = true; } // calculate distance to (e.g.) optical flow altitude limit // AHRS values are always in metres float alt_limit; float curr_alt; if (_ahrs.get_hgt_ctrl_limit(alt_limit) && _ahrs.get_relative_position_D_origin(curr_alt)) { // alt_limit is UP, curr_alt is DOWN: const float ctrl_alt_diff = alt_limit + curr_alt; if (!limit_alt || ctrl_alt_diff < alt_diff) { alt_diff = ctrl_alt_diff; limit_alt = true; } } #if HAL_PROXIMITY_ENABLED // get distance from proximity sensor float proximity_alt_diff; AP_Proximity *proximity = AP::proximity(); if (proximity && proximity->get_upward_distance(proximity_alt_diff)) { proximity_alt_diff -= _margin; if (!limit_alt || proximity_alt_diff < alt_diff) { alt_diff = proximity_alt_diff; limit_alt = true; } } #endif // limit climb rate if (limit_alt) { // do not allow climbing if we've breached the safe altitude if (alt_diff <= 0.0f) { climb_rate_cms = MIN(climb_rate_cms, 0.0f); // also calculate backup speed that will get us back to safe altitude backup_speed = -1*(get_max_speed(kP, accel_cmss_limited, -alt_diff*100.0f, dt)); return; } // limit climb rate const float max_speed = get_max_speed(kP, accel_cmss_limited, alt_diff*100.0f, dt); climb_rate_cms = MIN(max_speed, climb_rate_cms); } # endif } // adjust roll-pitch to push vehicle away from objects // roll and pitch value are in centi-degrees void AC_Avoid::adjust_roll_pitch(float &roll, float &pitch, float veh_angle_max) { // exit immediately if proximity based avoidance is disabled if ((_enabled & AC_AVOID_USE_PROXIMITY_SENSOR) == 0 || !_proximity_enabled) { return; } // exit immediately if angle max is zero if (_angle_max <= 0.0f || veh_angle_max <= 0.0f) { return; } float roll_positive = 0.0f; // maximum positive roll value float roll_negative = 0.0f; // minimum negative roll value float pitch_positive = 0.0f; // maximum positive pitch value float pitch_negative = 0.0f; // minimum negative pitch value // get maximum positive and negative roll and pitch percentages from proximity sensor get_proximity_roll_pitch_pct(roll_positive, roll_negative, pitch_positive, pitch_negative); // add maximum positive and negative percentages together for roll and pitch, convert to centi-degrees Vector2f rp_out((roll_positive + roll_negative) * 4500.0f, (pitch_positive + pitch_negative) * 4500.0f); // apply avoidance angular limits // the object avoidance lean angle is never more than 75% of the total angle-limit to allow the pilot to override const float angle_limit = constrain_float(_angle_max, 0.0f, veh_angle_max * AC_AVOID_ANGLE_MAX_PERCENT); float vec_len = rp_out.length(); if (vec_len > angle_limit) { rp_out *= (angle_limit / vec_len); } // add passed in roll, pitch angles rp_out.x += roll; rp_out.y += pitch; // apply total angular limits vec_len = rp_out.length(); if (vec_len > veh_angle_max) { rp_out *= (veh_angle_max / vec_len); } // return adjusted roll, pitch roll = rp_out.x; pitch = rp_out.y; } /* * Note: This method is used to limit velocity horizontally only * Limits the component of desired_vel_cms in the direction of the unit vector * limit_direction to be at most the maximum speed permitted by the limit_distance_cm. * * Uses velocity adjustment idea from Randy's second email on this thread: * https://groups.google.com/forum/#!searchin/drones-discuss/obstacle/drones-discuss/QwUXz__WuqY/qo3G8iTLSJAJ */ void AC_Avoid::limit_velocity_2D(float kP, float accel_cmss, Vector2f &desired_vel_cms, const Vector2f& limit_direction, float limit_distance_cm, float dt) { const float max_speed = get_max_speed(kP, accel_cmss, limit_distance_cm, dt); // project onto limit direction const float speed = desired_vel_cms * limit_direction; if (speed > max_speed) { // subtract difference between desired speed and maximum acceptable speed desired_vel_cms += limit_direction*(max_speed - speed); } } /* * Note: This method is used to limit velocity horizontally and vertically given a 3D desired velocity vector * Limits the component of desired_vel_cms in the direction of the obstacle_vector based on the passed value of "margin" */ void AC_Avoid::limit_velocity_3D(float kP, float accel_cmss, Vector3f &desired_vel_cms, const Vector3f& obstacle_vector, float margin_cm, float kP_z, float accel_cmss_z, float dt) { if (desired_vel_cms.is_zero()) { // nothing to limit return; } // create a margin_cm length vector in the direction of desired_vel_cms // this will create larger margin towards the direction vehicle is traveling in const Vector3f margin_vector = desired_vel_cms.normalized() * margin_cm; const Vector2f limit_direction_xy{obstacle_vector.x, obstacle_vector.y}; if (!limit_direction_xy.is_zero()) { const float distance_from_fence_xy = MAX((limit_direction_xy.length() - Vector2f{margin_vector.x, margin_vector.y}.length()), 0.0f); Vector2f velocity_xy{desired_vel_cms.x, desired_vel_cms.y}; limit_velocity_2D(kP, accel_cmss, velocity_xy, limit_direction_xy.normalized(), distance_from_fence_xy, dt); desired_vel_cms.x = velocity_xy.x; desired_vel_cms.y = velocity_xy.y; } if (is_zero(desired_vel_cms.z) || is_zero(obstacle_vector.z)) { // nothing to limit vertically if desired_vel_cms.z is zero // if obstacle_vector.z is zero then the obstacle is probably horizontally located, and we can move vertically return; } if (is_positive(desired_vel_cms.z) != is_positive(obstacle_vector.z)) { // why limit velocity vertically when we are going the opposite direction return; } // to check if Z velocity changes const float velocity_z_original = desired_vel_cms.z; const float z_speed = fabsf(desired_vel_cms.z); // obstacle_vector.z and margin_vector.z should be in same direction as checked above const float dist_z = MAX(fabsf(obstacle_vector.z) - fabsf(margin_vector.z), 0.0f); if (is_zero(dist_z)) { // eliminate any vertical velocity desired_vel_cms.z = 0.0f; } else { const float max_z_speed = get_max_speed(kP_z, accel_cmss_z, dist_z, dt); desired_vel_cms.z = MIN(max_z_speed, z_speed); } // make sure the direction of the Z velocity did not change // we are only limiting speed here, not changing directions // check if original z velocity is positive or negative if (is_negative(velocity_z_original)) { desired_vel_cms.z = desired_vel_cms.z * -1.0f; } } /* * Compute the back away horizontal velocity required to avoid breaching margin * INPUT: This method requires the breach in margin distance (back_distance_cm), direction towards the breach (limit_direction) * It then calculates the desired backup velocity and passes it on to "find_max_quadrant_velocity" method to distribute the velocity vectors into respective quadrants * OUTPUT: The method then outputs four velocities (quad1/2/3/4_back_vel_cms), which correspond to the maximum horizontal desired backup velocity in each quadrant */ void AC_Avoid::calc_backup_velocity_2D(float kP, float accel_cmss, Vector2f &quad1_back_vel_cms, Vector2f &quad2_back_vel_cms, Vector2f &quad3_back_vel_cms, Vector2f &quad4_back_vel_cms, float back_distance_cm, Vector2f limit_direction, float dt) { if (limit_direction.is_zero()) { // protect against divide by zero return; } // speed required to move away the exact distance that we have breached the margin with const float back_speed = get_max_speed(kP, 0.4f * accel_cmss, fabsf(back_distance_cm), dt); // direction to the obstacle limit_direction.normalize(); // move in the opposite direction with the required speed Vector2f back_direction_vel = limit_direction * (-back_speed); // divide the vector into quadrants, find maximum velocity component in each quadrant find_max_quadrant_velocity(back_direction_vel, quad1_back_vel_cms, quad2_back_vel_cms, quad3_back_vel_cms, quad4_back_vel_cms); } /* * Compute the back away velocity required to avoid breaching margin, including vertical component * min_z_vel is <= 0, and stores the greatest velocity in the downwards direction * max_z_vel is >= 0, and stores the greatest velocity in the upwards direction * eventually max_z_vel + min_z_vel will give the final desired Z backaway velocity */ void AC_Avoid::calc_backup_velocity_3D(float kP, float accel_cmss, Vector2f &quad1_back_vel_cms, Vector2f &quad2_back_vel_cms, Vector2f &quad3_back_vel_cms, Vector2f &quad4_back_vel_cms, float back_distance_cms, Vector3f limit_direction, float kp_z, float accel_cmss_z, float back_distance_z, float& min_z_vel, float& max_z_vel, float dt) { // backup horizontally if (is_positive(back_distance_cms)) { Vector2f limit_direction_2d{limit_direction.x, limit_direction.y}; calc_backup_velocity_2D(kP, accel_cmss, quad1_back_vel_cms, quad2_back_vel_cms, quad3_back_vel_cms, quad4_back_vel_cms, back_distance_cms, limit_direction_2d, dt); } // backup vertically if (!is_zero(back_distance_z)) { float back_speed_z = get_max_speed(kp_z, 0.4f * accel_cmss_z, fabsf(back_distance_z), dt); // Down is positive if (is_positive(back_distance_z)) { back_speed_z *= -1.0f; } // store the z backup speed into min or max z if possible if (back_speed_z < min_z_vel) { min_z_vel = back_speed_z; } if (back_speed_z > max_z_vel) { max_z_vel = back_speed_z; } } } /* * Calculate maximum velocity vector that can be formed in each quadrant * This method takes the desired backup velocity, and four other velocities corresponding to each quadrant * The desired velocity is then fit into one of the 4 quadrant velocities as per the sign of its components * This ensures that if we have multiple backup velocities, we can get the maximum of all of those velocities in each quadrant */ void AC_Avoid::find_max_quadrant_velocity(Vector2f &desired_vel, Vector2f &quad1_vel, Vector2f &quad2_vel, Vector2f &quad3_vel, Vector2f &quad4_vel) { if (desired_vel.is_zero()) { return; } // first quadrant: +ve x, +ve y direction if (is_positive(desired_vel.x) && is_positive(desired_vel.y)) { quad1_vel = Vector2f{MAX(quad1_vel.x, desired_vel.x), MAX(quad1_vel.y,desired_vel.y)}; } // second quadrant: -ve x, +ve y direction if (is_negative(desired_vel.x) && is_positive(desired_vel.y)) { quad2_vel = Vector2f{MIN(quad2_vel.x, desired_vel.x), MAX(quad2_vel.y,desired_vel.y)}; } // third quadrant: -ve x, -ve y direction if (is_negative(desired_vel.x) && is_negative(desired_vel.y)) { quad3_vel = Vector2f{MIN(quad3_vel.x, desired_vel.x), MIN(quad3_vel.y,desired_vel.y)}; } // fourth quadrant: +ve x, -ve y direction if (is_positive(desired_vel.x) && is_negative(desired_vel.y)) { quad4_vel = Vector2f{MAX(quad4_vel.x, desired_vel.x), MIN(quad4_vel.y,desired_vel.y)}; } } /* Calculate maximum velocity vector that can be formed in each quadrant and separately store max & min of vertical components */ void AC_Avoid::find_max_quadrant_velocity_3D(Vector3f &desired_vel, Vector2f &quad1_vel, Vector2f &quad2_vel, Vector2f &quad3_vel, Vector2f &quad4_vel, float &max_z_vel, float &min_z_vel) { // split into horizontal and vertical components Vector2f velocity_xy{desired_vel.x, desired_vel.y}; find_max_quadrant_velocity(velocity_xy, quad1_vel, quad2_vel, quad3_vel, quad4_vel); // store maximum and minimum of z if (is_positive(desired_vel.z) && (desired_vel.z > max_z_vel)) { max_z_vel = desired_vel.z; } if (is_negative(desired_vel.z) && (desired_vel.z < min_z_vel)) { min_z_vel = desired_vel.z; } } /* * Computes the speed such that the stopping distance * of the vehicle will be exactly the input distance. */ float AC_Avoid::get_max_speed(float kP, float accel_cmss, float distance_cm, float dt) const { if (is_zero(kP)) { return safe_sqrt(2.0f * distance_cm * accel_cmss); } else { return sqrt_controller(distance_cm, kP, accel_cmss, dt); } } /* * Adjusts the desired velocity for the circular fence. */ void AC_Avoid::adjust_velocity_circle_fence(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, float dt) { AC_Fence *fence = AP::fence(); if (fence == nullptr) { return; } AC_Fence &_fence = *fence; // exit if circular fence is not enabled if ((_fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) == 0) { return; } // exit if the circular fence has already been breached if ((_fence.get_breaches() & AC_FENCE_TYPE_CIRCLE) != 0) { return; } // get desired speed const float desired_speed = desired_vel_cms.length(); if (is_zero(desired_speed)) { // no avoidance necessary when desired speed is zero return; } const AP_AHRS &_ahrs = AP::ahrs(); // get position as a 2D offset from ahrs home Vector2f position_xy; if (!_ahrs.get_relative_position_NE_home(position_xy)) { // we have no idea where we are.... return; } position_xy *= 100.0f; // m -> cm // get the fence radius in cm const float fence_radius = _fence.get_radius() * 100.0f; // get the margin to the fence in cm const float margin_cm = _fence.get_margin() * 100.0f; if (margin_cm > fence_radius) { return; } // get vehicle distance from home const float dist_from_home = position_xy.length(); if (dist_from_home > fence_radius) { // outside of circular fence, no velocity adjustments return; } const float distance_to_boundary = fence_radius - dist_from_home; // for backing away Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel; // back away if vehicle has breached margin if (is_negative(distance_to_boundary - margin_cm)) { calc_backup_velocity_2D(kP, accel_cmss, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, margin_cm - distance_to_boundary, position_xy, dt); } // desired backup velocity is sum of maximum velocity component in each quadrant backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; // vehicle is inside the circular fence switch (_behavior) { case BEHAVIOR_SLIDE: { // implement sliding behaviour const Vector2f stopping_point = position_xy + desired_vel_cms*(get_stopping_distance(kP, accel_cmss, desired_speed)/desired_speed); const float stopping_point_dist_from_home = stopping_point.length(); if (stopping_point_dist_from_home <= fence_radius - margin_cm) { // stopping before before fence so no need to adjust return; } // unsafe desired velocity - will not be able to stop before reaching margin from fence // Project stopping point radially onto fence boundary // Adjusted velocity will point towards this projected point at a safe speed const Vector2f target_offset = stopping_point * ((fence_radius - margin_cm) / stopping_point_dist_from_home); const Vector2f target_direction = target_offset - position_xy; const float distance_to_target = target_direction.length(); if (is_positive(distance_to_target)) { const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt); desired_vel_cms = target_direction * (MIN(desired_speed,max_speed) / distance_to_target); } break; } case (BEHAVIOR_STOP): { // implement stopping behaviour // calculate stopping point plus a margin so we look forward far enough to intersect with circular fence const Vector2f stopping_point_plus_margin = position_xy + desired_vel_cms*((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, desired_speed))/desired_speed); const float stopping_point_plus_margin_dist_from_home = stopping_point_plus_margin.length(); if (dist_from_home >= fence_radius - margin_cm) { // vehicle has already breached margin around fence // if stopping point is even further from home (i.e. in wrong direction) then adjust speed to zero // otherwise user is backing away from fence so do not apply limits if (stopping_point_plus_margin_dist_from_home >= dist_from_home) { desired_vel_cms.zero(); } } else { // shorten vector without adjusting its direction Vector2f intersection; if (Vector2f::circle_segment_intersection(position_xy, stopping_point_plus_margin, Vector2f(0.0f,0.0f), fence_radius - margin_cm, intersection)) { const float distance_to_target = (intersection - position_xy).length(); const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt); if (max_speed < desired_speed) { desired_vel_cms *= MAX(max_speed, 0.0f) / desired_speed; } } } break; } } } /* * Adjusts the desired velocity for the exclusion polygons */ void AC_Avoid::adjust_velocity_inclusion_and_exclusion_polygons(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, float dt) { const AC_Fence *fence = AP::fence(); if (fence == nullptr) { return; } // exit if polygon fences are not enabled if ((fence->get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) { return; } // for backing away Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel; // iterate through inclusion polygons const uint8_t num_inclusion_polygons = fence->polyfence().get_inclusion_polygon_count(); for (uint8_t i = 0; i < num_inclusion_polygons; i++) { uint16_t num_points; const Vector2f* boundary = fence->polyfence().get_inclusion_polygon(i, num_points); Vector2f backup_vel_inc; // adjust velocity adjust_velocity_polygon(kP, accel_cmss, desired_vel_cms, backup_vel_inc, boundary, num_points, fence->get_margin(), dt, true); find_max_quadrant_velocity(backup_vel_inc, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel); } // iterate through exclusion polygons const uint8_t num_exclusion_polygons = fence->polyfence().get_exclusion_polygon_count(); for (uint8_t i = 0; i < num_exclusion_polygons; i++) { uint16_t num_points; const Vector2f* boundary = fence->polyfence().get_exclusion_polygon(i, num_points); Vector2f backup_vel_exc; // adjust velocity adjust_velocity_polygon(kP, accel_cmss, desired_vel_cms, backup_vel_exc, boundary, num_points, fence->get_margin(), dt, false); find_max_quadrant_velocity(backup_vel_exc, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel); } // desired backup velocity is sum of maximum velocity component in each quadrant backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; } /* * Adjusts the desired velocity for the inclusion circles */ void AC_Avoid::adjust_velocity_inclusion_circles(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, float dt) { const AC_Fence *fence = AP::fence(); if (fence == nullptr) { return; } // return immediately if no inclusion circles const uint8_t num_circles = fence->polyfence().get_inclusion_circle_count(); if (num_circles == 0) { return; } // exit if polygon fences are not enabled if ((fence->get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) { return; } // get vehicle position Vector2f position_NE; if (!AP::ahrs().get_relative_position_NE_origin(position_NE)) { // do not limit velocity if we don't have a position estimate return; } position_NE = position_NE * 100.0f; // m to cm // get the margin to the fence in cm const float margin_cm = fence->get_margin() * 100.0f; // get desired speed const float desired_speed = desired_vel_cms.length(); // get stopping distance as an offset from the vehicle Vector2f stopping_offset; if (!is_zero(desired_speed)) { switch (_behavior) { case BEHAVIOR_SLIDE: stopping_offset = desired_vel_cms*(get_stopping_distance(kP, accel_cmss, desired_speed)/desired_speed); break; case BEHAVIOR_STOP: // calculate stopping point plus a margin so we look forward far enough to intersect with circular fence stopping_offset = desired_vel_cms*((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, desired_speed))/desired_speed); break; } } // for backing away Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel; // iterate through inclusion circles for (uint8_t i = 0; i < num_circles; i++) { Vector2f center_pos_cm; float radius; if (fence->polyfence().get_inclusion_circle(i, center_pos_cm, radius)) { // get position relative to circle's center const Vector2f position_NE_rel = (position_NE - center_pos_cm); // if we are outside this circle do not limit velocity for this circle const float dist_sq_cm = position_NE_rel.length_squared(); const float radius_cm = (radius * 100.0f); if (dist_sq_cm > sq(radius_cm)) { continue; } const float radius_with_margin = radius_cm - margin_cm; if (is_negative(radius_with_margin)) { return; } const float margin_breach = radius_with_margin - safe_sqrt(dist_sq_cm); // back away if vehicle has breached margin if (is_negative(margin_breach)) { calc_backup_velocity_2D(kP, accel_cmss, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, margin_breach, position_NE_rel, dt); } if (is_zero(desired_speed)) { // no avoidance necessary when desired speed is zero continue; } switch (_behavior) { case BEHAVIOR_SLIDE: { // implement sliding behaviour const Vector2f stopping_point = position_NE_rel + stopping_offset; const float stopping_point_dist = stopping_point.length(); if (is_zero(stopping_point_dist) || (stopping_point_dist <= (radius_cm - margin_cm))) { // stopping before before fence so no need to adjust for this circle continue; } // unsafe desired velocity - will not be able to stop before reaching margin from fence // project stopping point radially onto fence boundary // adjusted velocity will point towards this projected point at a safe speed const Vector2f target_offset = stopping_point * ((radius_cm - margin_cm) / stopping_point_dist); const Vector2f target_direction = target_offset - position_NE_rel; const float distance_to_target = target_direction.length(); if (is_positive(distance_to_target)) { const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt); desired_vel_cms = target_direction * (MIN(desired_speed,max_speed) / distance_to_target); } } break; case BEHAVIOR_STOP: { // implement stopping behaviour const Vector2f stopping_point_plus_margin = position_NE_rel + stopping_offset; const float dist_cm = safe_sqrt(dist_sq_cm); if (dist_cm >= radius_cm - margin_cm) { // vehicle has already breached margin around fence // if stopping point is even further from center (i.e. in wrong direction) then adjust speed to zero // otherwise user is backing away from fence so do not apply limits if (stopping_point_plus_margin.length() >= dist_cm) { desired_vel_cms.zero(); // desired backup velocity is sum of maximum velocity component in each quadrant backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; return; } } else { // shorten vector without adjusting its direction Vector2f intersection; if (Vector2f::circle_segment_intersection(position_NE_rel, stopping_point_plus_margin, Vector2f(0.0f,0.0f), radius_cm - margin_cm, intersection)) { const float distance_to_target = (intersection - position_NE_rel).length(); const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt); if (max_speed < desired_speed) { desired_vel_cms *= MAX(max_speed, 0.0f) / desired_speed; } } } } break; } } } // desired backup velocity is sum of maximum velocity component in each quadrant backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; } /* * Adjusts the desired velocity for the exclusion circles */ void AC_Avoid::adjust_velocity_exclusion_circles(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, float dt) { const AC_Fence *fence = AP::fence(); if (fence == nullptr) { return; } // return immediately if no inclusion circles const uint8_t num_circles = fence->polyfence().get_exclusion_circle_count(); if (num_circles == 0) { return; } // exit if polygon fences are not enabled if ((fence->get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) { return; } // get vehicle position Vector2f position_NE; if (!AP::ahrs().get_relative_position_NE_origin(position_NE)) { // do not limit velocity if we don't have a position estimate return; } position_NE = position_NE * 100.0f; // m to cm // get the margin to the fence in cm const float margin_cm = fence->get_margin() * 100.0f; // for backing away Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel; // get desired speed const float desired_speed = desired_vel_cms.length(); // calculate stopping distance as an offset from the vehicle (only used for BEHAVIOR_STOP) // add a margin so we look forward far enough to intersect with circular fence Vector2f stopping_offset; if (!is_zero(desired_speed)) { if ((AC_Avoid::BehaviourType)_behavior.get() == BEHAVIOR_STOP) { stopping_offset = desired_vel_cms*((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, desired_speed))/desired_speed); } } // iterate through exclusion circles for (uint8_t i = 0; i < num_circles; i++) { Vector2f center_pos_cm; float radius; if (fence->polyfence().get_exclusion_circle(i, center_pos_cm, radius)) { // get position relative to circle's center const Vector2f position_NE_rel = (position_NE - center_pos_cm); // if we are inside this circle do not limit velocity for this circle const float dist_sq_cm = position_NE_rel.length_squared(); const float radius_cm = (radius * 100.0f); if (radius_cm < margin_cm) { return; } if (dist_sq_cm < sq(radius_cm)) { continue; } const Vector2f vector_to_center = center_pos_cm - position_NE; const float dist_to_boundary = vector_to_center.length() - radius_cm; // back away if vehicle has breached margin if (is_negative(dist_to_boundary - margin_cm)) { calc_backup_velocity_2D(kP, accel_cmss, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, margin_cm - dist_to_boundary, vector_to_center, dt); } if (is_zero(desired_speed)) { // no avoidance necessary when desired speed is zero continue; } switch (_behavior) { case BEHAVIOR_SLIDE: { // vector from current position to circle's center Vector2f limit_direction = vector_to_center; if (limit_direction.is_zero()) { // vehicle is exactly on circle center so do not limit velocity continue; } // calculate distance to edge of circle const float limit_distance_cm = limit_direction.length() - radius_cm; if (!is_positive(limit_distance_cm)) { // vehicle is within circle so do not limit velocity continue; } // vehicle is outside the circle, adjust velocity to stay outside limit_direction.normalize(); limit_velocity_2D(kP, accel_cmss, desired_vel_cms, limit_direction, MAX(limit_distance_cm - margin_cm, 0.0f), dt); } break; case BEHAVIOR_STOP: { // implement stopping behaviour const Vector2f stopping_point_plus_margin = position_NE_rel + stopping_offset; const float dist_cm = safe_sqrt(dist_sq_cm); if (dist_cm < radius_cm + margin_cm) { // vehicle has already breached margin around fence // if stopping point is closer to center (i.e. in wrong direction) then adjust speed to zero // otherwise user is backing away from fence so do not apply limits if (stopping_point_plus_margin.length() <= dist_cm) { desired_vel_cms.zero(); backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; return; } } else { // shorten vector without adjusting its direction Vector2f intersection; if (Vector2f::circle_segment_intersection(position_NE_rel, stopping_point_plus_margin, Vector2f(0.0f,0.0f), radius_cm + margin_cm, intersection)) { const float distance_to_target = (intersection - position_NE_rel).length(); const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt); if (max_speed < desired_speed) { desired_vel_cms *= MAX(max_speed, 0.0f) / desired_speed; } } } } break; } } } // desired backup velocity is sum of maximum velocity component in each quadrant backup_vel = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; } /* * Adjusts the desired velocity for the beacon fence. */ void AC_Avoid::adjust_velocity_beacon_fence(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, float dt) { AP_Beacon *_beacon = AP::beacon(); // exit if the beacon is not present if (_beacon == nullptr) { return; } // get boundary from beacons uint16_t num_points = 0; const Vector2f* boundary = _beacon->get_boundary_points(num_points); if ((boundary == nullptr) || (num_points == 0)) { return; } // adjust velocity using beacon float margin = 0; if (AP::fence()) { margin = AP::fence()->get_margin(); } adjust_velocity_polygon(kP, accel_cmss, desired_vel_cms, backup_vel, boundary, num_points, margin, dt, true); } /* * Adjusts the desired velocity based on output from the proximity sensor */ void AC_Avoid::adjust_velocity_proximity(float kP, float accel_cmss, Vector3f &desired_vel_cms, Vector3f &backup_vel, float kP_z, float accel_cmss_z, float dt) { #if HAL_PROXIMITY_ENABLED // exit immediately if proximity sensor is not present AP_Proximity *proximity = AP::proximity(); if (!proximity) { return; } AP_Proximity &_proximity = *proximity; // check for status of the sensor if (_proximity.get_status() != AP_Proximity::Status::Good) { return; } // get total number of obstacles const uint8_t obstacle_num = _proximity.get_obstacle_count(); if (obstacle_num == 0) { // no obstacles return; } const AP_AHRS &_ahrs = AP::ahrs(); // for backing away Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel; float max_back_vel_z = 0.0f; float min_back_vel_z = 0.0f; // rotate velocity vector from earth frame to body-frame since obstacles are in body-frame const Vector2f desired_vel_body_cms = _ahrs.earth_to_body2D(Vector2f{desired_vel_cms.x, desired_vel_cms.y}); // safe_vel will be adjusted to stay away from Proximity Obstacles Vector3f safe_vel = Vector3f{desired_vel_body_cms.x, desired_vel_body_cms.y, desired_vel_cms.z}; const Vector3f safe_vel_orig = safe_vel; // calc margin in cm const float margin_cm = MAX(_margin * 100.0f, 0.0f); Vector3f stopping_point_plus_margin; if (!desired_vel_cms.is_zero()) { // only used for "stop mode". Pre-calculating the stopping point here makes sure we do not need to repeat the calculations under iterations. const float speed = safe_vel.length(); stopping_point_plus_margin = safe_vel * ((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, speed))/speed); } for (uint8_t i = 0; i deadzone) { // this vector will help us decide how much we have to back away horizontally and vertically const Vector3f margin_vector = vector_to_obstacle.normalized() * breach_dist; const float xy_back_dist = norm(margin_vector.x, margin_vector.y); const float z_back_dist = margin_vector.z; calc_backup_velocity_3D(kP, accel_cmss, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, xy_back_dist, vector_to_obstacle, kP_z, accel_cmss_z, z_back_dist, min_back_vel_z, max_back_vel_z, dt); } } if (desired_vel_cms.is_zero()) { // cannot limit velocity if there is nothing to limit // backing up (if needed) has already been done continue; } switch (_behavior) { case BEHAVIOR_SLIDE: { Vector3f limit_direction{vector_to_obstacle}; // distance to closest point const float limit_distance_cm = limit_direction.length(); if (is_zero(limit_distance_cm)) { // We are exactly on the edge, this should ideally never be possible // i.e. do not adjust velocity. continue; } // Adjust velocity to not violate margin. limit_velocity_3D(kP, accel_cmss, safe_vel, limit_direction, margin_cm, kP_z, accel_cmss_z, dt); break; } case BEHAVIOR_STOP: { // vector from current position to obstacle Vector3f limit_direction; // find closest point with line segment // also see if the vehicle will "roughly" intersect the boundary with the projected stopping point const bool intersect = _proximity.closest_point_from_segment_to_obstacle(i, Vector3f{}, stopping_point_plus_margin, limit_direction); if (intersect) { // the vehicle is intersecting the plane formed by the boundary // distance to the closest point from the stopping point float limit_distance_cm = limit_direction.length(); if (is_zero(limit_distance_cm)) { // We are exactly on the edge, this should ideally never be possible // i.e. do not adjust velocity. return; } if (limit_distance_cm <= margin_cm) { // we are within the margin so stop vehicle safe_vel.zero(); } else { // vehicle inside the given edge, adjust velocity to not violate this edge limit_velocity_3D(kP, accel_cmss, safe_vel, limit_direction, margin_cm, kP_z, accel_cmss_z, dt); } break; } } } } // desired backup velocity is sum of maximum velocity component in each quadrant const Vector2f desired_back_vel_cms_xy = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; const float desired_back_vel_cms_z = max_back_vel_z + min_back_vel_z; if (safe_vel == safe_vel_orig && desired_back_vel_cms_xy.is_zero() && is_zero(desired_back_vel_cms_z)) { // proximity avoidance did nothing, no point in doing the calculations below. Return early backup_vel.zero(); return; } // set modified desired velocity vector and back away velocity vector // vectors were in body-frame, rotate resulting vector back to earth-frame const Vector2f safe_vel_2d = _ahrs.body_to_earth2D(Vector2f{safe_vel.x, safe_vel.y}); desired_vel_cms = Vector3f{safe_vel_2d.x, safe_vel_2d.y, safe_vel.z}; const Vector2f backup_vel_xy = _ahrs.body_to_earth2D(desired_back_vel_cms_xy); backup_vel = Vector3f{backup_vel_xy.x, backup_vel_xy.y, desired_back_vel_cms_z}; #endif // HAL_PROXIMITY_ENABLED } /* * Adjusts the desired velocity for the polygon fence. */ void AC_Avoid::adjust_velocity_polygon(float kP, float accel_cmss, Vector2f &desired_vel_cms, Vector2f &backup_vel, const Vector2f* boundary, uint16_t num_points, float margin, float dt, bool stay_inside) { // exit if there are no points if (boundary == nullptr || num_points == 0) { return; } const AP_AHRS &_ahrs = AP::ahrs(); // do not adjust velocity if vehicle is outside the polygon fence Vector2f position_xy; if (!_ahrs.get_relative_position_NE_origin(position_xy)) { // boundary is in earth frame but we have no idea // where we are return; } position_xy = position_xy * 100.0f; // m to cm // return if we have already breached polygon const bool inside_polygon = !Polygon_outside(position_xy, boundary, num_points); if (inside_polygon != stay_inside) { return; } // Safe_vel will be adjusted to remain within fence. // We need a separate vector in case adjustment fails, // e.g. if we are exactly on the boundary. Vector2f safe_vel(desired_vel_cms); Vector2f desired_back_vel_cms; // calc margin in cm const float margin_cm = MAX(margin * 100.0f, 0.0f); // for stopping const float speed = safe_vel.length(); Vector2f stopping_point_plus_margin; if (!desired_vel_cms.is_zero()) { stopping_point_plus_margin = position_xy + safe_vel*((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, speed))/speed); } // for backing away Vector2f quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel; for (uint16_t i=0; i= num_points) { j = 0; } // end points of current edge Vector2f start = boundary[j]; Vector2f end = boundary[i]; Vector2f vector_to_boundary = Vector2f::closest_point(position_xy, start, end) - position_xy; // back away if vehicle has breached margin if (is_negative(vector_to_boundary.length() - margin_cm)) { calc_backup_velocity_2D(kP, accel_cmss, quad_1_back_vel, quad_2_back_vel, quad_3_back_vel, quad_4_back_vel, margin_cm-vector_to_boundary.length(), vector_to_boundary, dt); } // exit immediately if no desired velocity if (desired_vel_cms.is_zero()) { continue; } switch (_behavior) { case (BEHAVIOR_SLIDE): { // vector from current position to closest point on current edge Vector2f limit_direction = vector_to_boundary; // distance to closest point const float limit_distance_cm = limit_direction.length(); if (is_zero(limit_distance_cm)) { // We are exactly on the edge - treat this as a fence breach. // i.e. do not adjust velocity. return; } // We are strictly inside the given edge. // Adjust velocity to not violate this edge. limit_direction /= limit_distance_cm; limit_velocity_2D(kP, accel_cmss, safe_vel, limit_direction, MAX(limit_distance_cm - margin_cm, 0.0f), dt); break; } case (BEHAVIOR_STOP): { // find intersection with line segment Vector2f intersection; if (Vector2f::segment_intersection(position_xy, stopping_point_plus_margin, start, end, intersection)) { // vector from current position to point on current edge Vector2f limit_direction = intersection - position_xy; const float limit_distance_cm = limit_direction.length(); if (is_zero(limit_distance_cm)) { // We are exactly on the edge - treat this as a fence breach. // i.e. do not adjust velocity. return; } if (limit_distance_cm <= margin_cm) { // we are within the margin so stop vehicle safe_vel.zero(); } else { // vehicle inside the given edge, adjust velocity to not violate this edge limit_direction /= limit_distance_cm; limit_velocity_2D(kP, accel_cmss, safe_vel, limit_direction, MAX(limit_distance_cm - margin_cm, 0.0f), dt); } } break; } } } // desired backup velocity is sum of maximum velocity component in each quadrant desired_back_vel_cms = quad_1_back_vel + quad_2_back_vel + quad_3_back_vel + quad_4_back_vel; // set modified desired velocity vector or back away velocity vector desired_vel_cms = safe_vel; backup_vel = desired_back_vel_cms; } /* * Computes distance required to stop, given current speed. * * Implementation copied from AC_PosControl. */ float AC_Avoid::get_stopping_distance(float kP, float accel_cmss, float speed_cms) const { // avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero if (accel_cmss <= 0.0f || is_zero(speed_cms)) { return 0.0f; } // handle linear deceleration if (kP <= 0.0f) { return 0.5f * sq(speed_cms) / accel_cmss; } // calculate distance within which we can stop // accel_cmss/kP is the point at which velocity switches from linear to sqrt if (speed_cms < accel_cmss/kP) { return speed_cms/kP; } else { // accel_cmss/(2.0f*kP*kP) is the distance at which we switch from linear to sqrt response return accel_cmss/(2.0f*kP*kP) + (speed_cms*speed_cms)/(2.0f*accel_cmss); } } // convert distance (in meters) to a lean percentage (in 0~1 range) for use in manual flight modes float AC_Avoid::distance_to_lean_pct(float dist_m) { // ignore objects beyond DIST_MAX if (dist_m < 0.0f || dist_m >= _dist_max || _dist_max <= 0.0f) { return 0.0f; } // inverted but linear response return 1.0f - (dist_m / _dist_max); } // returns the maximum positive and negative roll and pitch percentages (in -1 ~ +1 range) based on the proximity sensor void AC_Avoid::get_proximity_roll_pitch_pct(float &roll_positive, float &roll_negative, float &pitch_positive, float &pitch_negative) { #if HAL_PROXIMITY_ENABLED AP_Proximity *proximity = AP::proximity(); if (proximity == nullptr) { return; } AP_Proximity &_proximity = *proximity; // exit immediately if proximity sensor is not present if (_proximity.get_status() != AP_Proximity::Status::Good) { return; } const uint8_t obj_count = _proximity.get_object_count(); // if no objects return if (obj_count == 0) { return; } // calculate maximum roll, pitch values from objects for (uint8_t i=0; i 0.0f) { roll_positive = MAX(roll_positive, roll_pct); } else if (roll_pct < 0.0f) { roll_negative = MIN(roll_negative, roll_pct); } if (pitch_pct > 0.0f) { pitch_positive = MAX(pitch_positive, pitch_pct); } else if (pitch_pct < 0.0f) { pitch_negative = MIN(pitch_negative, pitch_pct); } } } } #endif // HAL_PROXIMITY_ENABLED } // singleton instance AC_Avoid *AC_Avoid::_singleton; namespace AP { AC_Avoid *ac_avoid() { return AC_Avoid::get_singleton(); } }