/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // // Emlid Reach Binary (ERB) GPS driver for ArduPilot. // ERB protocol: http://files.emlid.com/ERB.pdf #include "AP_GPS.h" #include "AP_GPS_ERB.h" #if AP_GPS_ERB_ENABLED #define ERB_DEBUGGING 0 #define STAT_FIX_VALID 0x01 extern const AP_HAL::HAL& hal; #if ERB_DEBUGGING # define Debug(fmt, args ...) do {hal.console->printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); hal.scheduler->delay(1); } while(0) #else # define Debug(fmt, args ...) #endif // Process bytes available from the stream // // The stream is assumed to contain only messages we recognise. If it // contains other messages, and those messages contain the preamble // bytes, it is possible for this code to fail to synchronise to the // stream immediately. Without buffering the entire message and // re-processing it from the top, this is unavoidable. The parser // attempts to avoid this when possible. // bool AP_GPS_ERB::read(void) { uint8_t data; int16_t numc; bool parsed = false; numc = port->available(); for (int16_t i = 0; i < numc; i++) { // Process bytes received // read the next byte data = port->read(); reset: switch(_step) { // Message preamble detection // case 1: if (PREAMBLE2 == data) { _step++; break; } _step = 0; Debug("reset %u", __LINE__); FALLTHROUGH; case 0: if(PREAMBLE1 == data) _step++; break; // Message header processing // case 2: _step++; _msg_id = data; _ck_b = _ck_a = data; // reset the checksum accumulators break; case 3: _step++; _ck_b += (_ck_a += data); // checksum byte _payload_length = data; // payload length low byte break; case 4: _step++; _ck_b += (_ck_a += data); // checksum byte _payload_length += (uint16_t)(data<<8); _payload_counter = 0; // prepare to receive payload break; // Receive message data // case 5: _ck_b += (_ck_a += data); // checksum byte if (_payload_counter < sizeof(_buffer)) { _buffer[_payload_counter] = data; } if (++_payload_counter == _payload_length) _step++; break; // Checksum and message processing // case 6: _step++; if (_ck_a != data) { Debug("bad cka %x should be %x", data, _ck_a); _step = 0; goto reset; } break; case 7: _step = 0; if (_ck_b != data) { Debug("bad ckb %x should be %x", data, _ck_b); break; // bad checksum } if (_parse_gps()) { parsed = true; } break; } } return parsed; } bool AP_GPS_ERB::_parse_gps(void) { switch (_msg_id) { case MSG_VER: Debug("Version of ERB protocol %u.%u.%u", _buffer.ver.ver_high, _buffer.ver.ver_medium, _buffer.ver.ver_low); break; case MSG_POS: Debug("Message POS"); _last_pos_time = _buffer.pos.time; state.location.lng = (int32_t)(_buffer.pos.longitude * (double)1e7); state.location.lat = (int32_t)(_buffer.pos.latitude * (double)1e7); state.location.alt = (int32_t)(_buffer.pos.altitude_msl * 100); state.have_undulation = true; state.undulation = _buffer.pos.altitude_msl - _buffer.pos.altitude_ellipsoid; state.status = next_fix; _new_position = true; state.horizontal_accuracy = _buffer.pos.horizontal_accuracy * 1.0e-3f; state.vertical_accuracy = _buffer.pos.vertical_accuracy * 1.0e-3f; state.have_horizontal_accuracy = true; state.have_vertical_accuracy = true; break; case MSG_STAT: Debug("Message STAT fix_status=%u fix_type=%u", _buffer.stat.fix_status, _buffer.stat.fix_type); if (_buffer.stat.fix_status & STAT_FIX_VALID) { if (_buffer.stat.fix_type == AP_GPS_ERB::FIX_FIX) { next_fix = AP_GPS::GPS_OK_FIX_3D_RTK_FIXED; } else if (_buffer.stat.fix_type == AP_GPS_ERB::FIX_FLOAT) { next_fix = AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT; } else if (_buffer.stat.fix_type == AP_GPS_ERB::FIX_SINGLE) { next_fix = AP_GPS::GPS_OK_FIX_3D; } else { next_fix = AP_GPS::NO_FIX; state.status = AP_GPS::NO_FIX; } } else { next_fix = AP_GPS::NO_FIX; state.status = AP_GPS::NO_FIX; } state.num_sats = _buffer.stat.satellites; if (next_fix >= AP_GPS::GPS_OK_FIX_3D) { // use the uart receive time to make packet timestamps more accurate set_uart_timestamp(_payload_length + sizeof(erb_header) + 2); state.last_gps_time_ms = AP_HAL::millis(); state.time_week_ms = _buffer.stat.time; state.time_week = _buffer.stat.week; } break; case MSG_DOPS: Debug("Message DOPS"); state.hdop = _buffer.dops.hDOP; state.vdop = _buffer.dops.vDOP; break; case MSG_VEL: Debug("Message VEL"); _last_vel_time = _buffer.vel.time; state.ground_speed = _buffer.vel.speed_2d * 0.01f; // m/s // Heading 2D deg * 100000 rescaled to deg * 100 state.ground_course = wrap_360(_buffer.vel.heading_2d * 1.0e-5f); state.have_vertical_velocity = true; state.velocity.x = _buffer.vel.vel_north * 0.01f; state.velocity.y = _buffer.vel.vel_east * 0.01f; state.velocity.z = _buffer.vel.vel_down * 0.01f; state.have_speed_accuracy = true; state.speed_accuracy = _buffer.vel.speed_accuracy * 0.01f; _new_speed = true; break; case MSG_RTK: Debug("Message RTK"); state.rtk_baseline_coords_type = RTK_BASELINE_COORDINATE_SYSTEM_NED; state.rtk_num_sats = _buffer.rtk.base_num_sats; if (_buffer.rtk.age_cs == 0xFFFF) { state.rtk_age_ms = 0xFFFFFFFF; } else { state.rtk_age_ms = _buffer.rtk.age_cs * 10; } state.rtk_baseline_x_mm = _buffer.rtk.baseline_N_mm; state.rtk_baseline_y_mm = _buffer.rtk.baseline_E_mm; state.rtk_baseline_z_mm = _buffer.rtk.baseline_D_mm; state.rtk_accuracy = _buffer.rtk.ar_ratio; state.rtk_week_number = _buffer.rtk.base_week_number; state.rtk_time_week_ms = _buffer.rtk.base_time_week_ms; break; default: Debug("Unexpected message 0x%02x", (unsigned)_msg_id); return false; } // we only return true when we get new position and speed data // this ensures we don't use stale data if (_new_position && _new_speed && _last_vel_time == _last_pos_time) { _new_speed = _new_position = false; _fix_count++; return true; } return false; } /* detect a ERB GPS. Adds one byte, and returns true if the stream matches a ERB */ bool AP_GPS_ERB::_detect(struct ERB_detect_state &state, uint8_t data) { reset: switch (state.step) { case 1: if (PREAMBLE2 == data) { state.step++; break; } state.step = 0; FALLTHROUGH; case 0: if (PREAMBLE1 == data) state.step++; break; case 2: state.step++; state.ck_b = state.ck_a = data; break; case 3: state.step++; state.ck_b += (state.ck_a += data); state.payload_length = data; break; case 4: state.step++; state.ck_b += (state.ck_a += data); state.payload_counter = 0; break; case 5: state.ck_b += (state.ck_a += data); if (++state.payload_counter == state.payload_length) state.step++; break; case 6: state.step++; if (state.ck_a != data) { state.step = 0; goto reset; } break; case 7: state.step = 0; if (state.ck_b == data) { return true; } else { goto reset; } } return false; } #endif