// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #if AP_AHRS_NAVEKF_AVAILABLE #include #define MOUNT_DEBUG 0 #define TILT_CONTROL_ONLY 0 #if MOUNT_DEBUG #include #endif AP_Mount_MAVLink::AP_Mount_MAVLink(AP_Mount &frontend, AP_Mount::mount_state &state, uint8_t instance) : AP_Mount_Backend(frontend, state, instance), _initialised(false), _ekf(frontend._ahrs), K_gimbalRate(0.1f), angRateLimit(0.5f), yawRateFiltPole(10.0f), yawErrorLimit(0.1f), vehicleYawRateFilt(0) {} // init - performs any required initialisation for this instance void AP_Mount_MAVLink::init(const AP_SerialManager& serial_manager) { _initialised = true; set_mode((enum MAV_MOUNT_MODE)_state._default_mode.get()); } // update mount position - should be called periodically void AP_Mount_MAVLink::update() { // exit immediately if not initialised if (!_initialised) { return; } // update based on mount mode switch(get_mode()) { // move mount to a "retracted" position. we do not implement a separate servo based retract mechanism case MAV_MOUNT_MODE_RETRACT: break; // move mount to a neutral position, typically pointing forward case MAV_MOUNT_MODE_NEUTRAL: break; // point to the angles given by a mavlink message case MAV_MOUNT_MODE_MAVLINK_TARGETING: // do nothing because earth-frame angle targets (i.e. _angle_ef_target_rad) should have already been set by a MOUNT_CONTROL message from GCS break; // RC radio manual angle control, but with stabilization from the AHRS case MAV_MOUNT_MODE_RC_TARGETING: // update targets using pilot's rc inputs update_targets_from_rc(); break; // point mount to a GPS point given by the mission planner case MAV_MOUNT_MODE_GPS_POINT: if(_frontend._ahrs.get_gps().status() >= AP_GPS::GPS_OK_FIX_2D) { calc_angle_to_location(_state._roi_target, _angle_ef_target_rad, true, true); } break; default: // we do not know this mode so do nothing break; } } // has_pan_control - returns true if this mount can control it's pan (required for multicopters) bool AP_Mount_MAVLink::has_pan_control() const { // we do not have yaw control return false; } // set_mode - sets mount's mode void AP_Mount_MAVLink::set_mode(enum MAV_MOUNT_MODE mode) { // exit immediately if not initialised if (!_initialised) { return; } // record the mode change _state._mode = mode; } // status_msg - called to allow mounts to send their status to GCS using the MOUNT_STATUS message void AP_Mount_MAVLink::status_msg(mavlink_channel_t chan) { // do nothing - we rely on the mount sending the messages directly } /* handle a GIMBAL_REPORT message */ void AP_Mount_MAVLink::handle_gimbal_report(mavlink_channel_t chan, mavlink_message_t *msg) { // just save it for future processing and reporting to GCS for now mavlink_msg_gimbal_report_decode(msg, &_gimbal_report); Vector3f delta_angles(_gimbal_report.delta_angle_x, _gimbal_report.delta_angle_y, _gimbal_report.delta_angle_z); Vector3f delta_velocity(_gimbal_report.delta_velocity_x, _gimbal_report.delta_velocity_y, _gimbal_report.delta_velocity_z); Vector3f joint_angles(_gimbal_report.joint_roll, _gimbal_report.joint_pitch, _gimbal_report.joint_yaw); _ekf.RunEKF(_gimbal_report.delta_time, delta_angles, delta_velocity, joint_angles); /* we have two different gimbal control algorithms. One does tilt control only, but has better control characteristics. The other does roll/tilt/yaw, but has worset control characteristics */ #if TILT_CONTROL_ONLY Vector3f rateDemand = gimbal_update_control2(_angle_ef_target_rad, _gimbal_report.delta_time, delta_angles, delta_velocity, joint_angles); #else Vector3f rateDemand = gimbal_update_control1(_angle_ef_target_rad, _gimbal_report.delta_time, delta_angles, delta_velocity, joint_angles); #endif // for now send a zero gyro bias update and incorporate into the // demanded rates Vector3f gyroBias(0,0,0); // send the gimbal control message mavlink_msg_gimbal_control_send(chan, msg->sysid, msg->compid, rateDemand.x, rateDemand.y, rateDemand.z, // demanded rates gyroBias.x, gyroBias.y, gyroBias.z); } /* send a GIMBAL_REPORT message to the GCS */ void AP_Mount_MAVLink::send_gimbal_report(mavlink_channel_t chan) { mavlink_msg_gimbal_report_send(chan, 0, 0, // send as broadcast _gimbal_report.delta_time, _gimbal_report.delta_angle_x, _gimbal_report.delta_angle_y, _gimbal_report.delta_angle_z, _gimbal_report.delta_velocity_x, _gimbal_report.delta_velocity_y, _gimbal_report.delta_velocity_z, _gimbal_report.joint_roll, _gimbal_report.joint_pitch, _gimbal_report.joint_yaw); float tilt; Vector3f velocity, euler, gyroBias; _ekf.getDebug(tilt, velocity, euler, gyroBias); #if MOUNT_DEBUG ::printf("tilt=%.2f euler=(%.2f, %.2f, %.2f) vel=(%.2f, %.2f %.2f)\n", tilt, degrees(euler.x), degrees(euler.y), degrees(euler.z), (velocity.x), (velocity.y), (velocity.z)); #endif } /* calculate demanded rates for the gimbal */ Vector3f AP_Mount_MAVLink::gimbal_update_control1(const Vector3f &ef_target_euler_rad, float delta_time, const Vector3f &delta_angles, const Vector3f &delta_velocity, const Vector3f &joint_angles) { // get the gyro bias data Vector3f gyroBias; _ekf.getGyroBias(gyroBias); // get the gimbal estimated quaternion Quaternion quatEst; _ekf.getQuat(quatEst); // set the demanded quaternion - tilt down with a roll and yaw of zero Quaternion quatDem; quatDem.from_euler(ef_target_euler_rad.x, ef_target_euler_rad.y, ef_target_euler_rad.z); //divide the demanded quaternion by the estimated to get the error Quaternion quatErr = quatDem / quatEst; // convert the quaternion to an angle error vector Vector3f deltaAngErr; float scaler = 1.0f-quatErr[0]*quatErr[0]; if (scaler > 1e-12) { scaler = 1.0f/sqrtf(scaler); deltaAngErr.x = quatErr[1] * scaler; deltaAngErr.y = quatErr[2] * scaler; deltaAngErr.z = quatErr[3] * scaler; } else { deltaAngErr.zero(); } // multiply the angle error vector by a gain to calculate a demanded gimbal rate Vector3f rateDemand = deltaAngErr * 1.0f; // Constrain the demanded rate to a length of 0.5 rad /sec float length = rateDemand.length(); if (length > 0.5f) { rateDemand = rateDemand * (0.5f / length); } return rateDemand; } // convert the quaternion to rotation vector Vector3f AP_Mount_MAVLink::quaternion_to_vector(const Quaternion &quat) { Vector3f vector; float scaler = 1.0f-quat[0]*quat[0]; if (scaler > 1e-12f) { scaler = 1.0f/sqrtf(scaler); if (quat[0] < 0.0f) { scaler *= -1.0f; } vector.x = quat[1] * scaler; vector.y = quat[2] * scaler; vector.z = quat[3] * scaler; } else { vector.zero(); } return vector; } // Define rotation matrix using a 312 rotation sequence vector Matrix3f AP_Mount_MAVLink::vector312_to_rotation_matrix(const Vector3f &vector) { Matrix3f matrix; float cosPhi = cosf(vector.x); float cosTheta = cosf(vector.y); float sinPhi = sinf(vector.x); float sinTheta = sinf(vector.y); float sinPsi = sinf(vector.z); float cosPsi = cosf(vector.z); matrix[0][0] = cosTheta*cosPsi-sinPsi*sinPhi*sinTheta; matrix[1][0] = -sinPsi*cosPhi; matrix[2][0] = cosPsi*sinTheta+cosTheta*sinPsi*sinPhi; matrix[0][1] = cosTheta*sinPsi+cosPsi*sinPhi*sinTheta; matrix[1][1] = cosPsi*cosPhi; matrix[2][1] = sinPsi*sinTheta-cosTheta*cosPsi*sinPhi; matrix[0][2] = -sinTheta*cosPhi; matrix[1][2] = sinPhi; matrix[2][2] = cosTheta*cosPhi; return matrix; } /* calculate the demanded rates for the mount, running the controller */ Vector3f AP_Mount_MAVLink::gimbal_update_control2(const Vector3f &ef_target_euler_rad, float delta_time, const Vector3f &delta_angles, const Vector3f &delta_velocity, const Vector3f &joint_angles) { // get the gimbal quaternion estimate Quaternion quatEst; _ekf.getQuat(quatEst); // Add the control rate vectors Vector3f gimbalRateDemVec = getGimbalRateDemVecYaw(ef_target_euler_rad, delta_time, quatEst, joint_angles) + getGimbalRateDemVecTilt(ef_target_euler_rad, quatEst) + getGimbalRateDemVecForward(ef_target_euler_rad, delta_time, quatEst); Vector3f gyroBias; _ekf.getGyroBias(gyroBias); gimbalRateDemVec += gyroBias; return gimbalRateDemVec; } Vector3f AP_Mount_MAVLink::getGimbalRateDemVecYaw(const Vector3f &ef_target_euler_rad, float delta_time, const Quaternion &quatEst, const Vector3f &joint_angles) { // Define rotation from vehicle to gimbal using a 312 rotation sequence Matrix3f Tvg = vector312_to_rotation_matrix(joint_angles); // multiply the yaw joint angle by a gain to calculate a // demanded vehicle frame relative rate vector required to // keep the yaw joint centred Vector3f gimbalRateDemVecYaw(0, 0, - K_gimbalRate * joint_angles.z); // Get filtered vehicle turn rate in earth frame vehicleYawRateFilt = (1.0f - yawRateFiltPole * delta_time) * vehicleYawRateFilt + yawRateFiltPole * delta_time * _frontend._ahrs.get_yaw_rate_earth(); Vector3f vehicle_rate_ef(0,0,vehicleYawRateFilt); // calculate the maximum steady state rate error corresponding to the maximum permitted yaw angle error float maxRate = K_gimbalRate * yawErrorLimit; float vehicle_rate_mag_ef = vehicle_rate_ef.length(); float excess_rate_correction = fabs(vehicle_rate_mag_ef) - maxRate; if (vehicle_rate_mag_ef > maxRate) { if (vehicle_rate_ef.z>0.0f) { gimbalRateDemVecYaw += _frontend._ahrs.get_dcm_matrix().transposed()*Vector3f(0,0,excess_rate_correction); } else { gimbalRateDemVecYaw -= _frontend._ahrs.get_dcm_matrix().transposed()*Vector3f(0,0,excess_rate_correction); } } // rotate into gimbal frame to calculate the gimbal rate vector required to keep the yaw gimbal centred gimbalRateDemVecYaw = Tvg * gimbalRateDemVecYaw; return gimbalRateDemVecYaw; } Vector3f AP_Mount_MAVLink::getGimbalRateDemVecTilt(const Vector3f &ef_target_euler_rad, const Quaternion &quatEst) { // Calculate the gimbal 321 Euler angle estimates relative to earth frame Vector3f eulerEst; quatEst.to_euler(eulerEst.x, eulerEst.y, eulerEst.z); // Calculate a demanded quaternion using the demanded roll and pitch and estimated yaw (yaw is slaved to the vehicle) Quaternion quatDem; //TODO receive target from AP_Mount quatDem.from_euler(0, ef_target_euler_rad.y, eulerEst.z); //divide the demanded quaternion by the estimated to get the error Quaternion quatErr = quatDem / quatEst; // multiply the angle error vector by a gain to calculate a demanded gimbal rate required to control tilt Vector3f gimbalRateDemVecTilt = quaternion_to_vector(quatErr) * K_gimbalRate; return gimbalRateDemVecTilt; } Vector3f AP_Mount_MAVLink::getGimbalRateDemVecForward(const Vector3f &ef_target_euler_rad, float delta_time, const Quaternion &quatEst) { // calculate the delta rotation from the last to the current demand where the demand does not incorporate the copters yaw rotation Quaternion quatDemForward; quatDemForward.from_euler(0, ef_target_euler_rad.y, 0); Quaternion deltaQuat = quatDemForward / lastQuatDem; lastQuatDem = quatDemForward; // convert to a rotation vector and divide by delta time to obtain a forward path rate demand Vector3f gimbalRateDemVecForward = quaternion_to_vector(deltaQuat) * (1.0f / delta_time); return gimbalRateDemVecForward; } #endif // AP_AHRS_NAVEKF_AVAILABLE