// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- //**************************************************************** // Function that controls aileron/rudder, elevator, rudder (if 4 channel control) and throttle to produce desired attitude and airspeed. //**************************************************************** static void learning() { // Calculate desired servo output for the turn // Wheels Direction // --------------------------------------------- g.channel_roll.servo_out = nav_roll; g.channel_roll.servo_out = g.channel_roll.servo_out * g.turn_gain; g.channel_rudder.servo_out = g.channel_roll.servo_out; } static void crash_checker() { if(ahrs.pitch_sensor < -4500){ crash_timer = 255; } if(crash_timer > 0) crash_timer--; } static void calc_throttle() { int rov_speed; int throttle_target = g.throttle_cruise + throttle_nudge + 50; target_airspeed = g.airspeed_cruise; if(speed_boost) rov_speed = g.booster * target_airspeed; else rov_speed = target_airspeed; groundspeed_error = rov_speed - (float)ground_speed; int throttle_req = (throttle_target + g.pidTeThrottle.get_pid(groundspeed_error)) * 10; if(g.throttle_slewrate > 0) { if (throttle_req > throttle_last) throttle = throttle + g.throttle_slewrate; else if (throttle_req < throttle_last) { throttle = throttle - g.throttle_slewrate; } throttle = constrain(throttle, 500, throttle_req); throttle_last = throttle; } else { throttle = throttle_req; } g.channel_throttle.servo_out = constrain(((float)throttle / 10.0f), 0, g.throttle_max.get()); } /***************************************** * Calculate desired turn angles (in medium freq loop) *****************************************/ static void calc_nav_roll() { // Adjust gain based on ground speed nav_gain_scaler = (float)ground_speed / (g.airspeed_cruise * 100.0); nav_gain_scaler = constrain(nav_gain_scaler, 0.2, 1.4); // Calculate the required turn of the wheels rover // ---------------------------------------- // negative error = left turn // positive error = right turn nav_roll = g.pidNavRoll.get_pid(bearing_error, nav_gain_scaler); //returns desired bank angle in degrees*100 if(obstacle) { // obstacle avoidance nav_roll += 9000; // if obstacle in front turn 90° right speed_boost = false; } nav_roll = constrain(nav_roll, -g.roll_limit.get(), g.roll_limit.get()); } // Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc. // Keeps outdated data out of our calculations static void reset_I(void) { g.pidNavRoll.reset_I(); g.pidTeThrottle.reset_I(); // g.pidAltitudeThrottle.reset_I(); } /***************************************** * Set the flight control servos based on the current calculated values *****************************************/ static void set_servos(void) { int flapSpeedSource = 0; // vectorize the rc channels RC_Channel_aux* rc_array[NUM_CHANNELS]; rc_array[CH_1] = NULL; rc_array[CH_2] = NULL; rc_array[CH_3] = NULL; rc_array[CH_4] = NULL; rc_array[CH_5] = &g.rc_5; rc_array[CH_6] = &g.rc_6; rc_array[CH_7] = &g.rc_7; rc_array[CH_8] = &g.rc_8; if((control_mode == MANUAL) || (control_mode == LEARNING)){ // do a direct pass through of radio values g.channel_roll.radio_out = g.channel_roll.radio_in; if(obstacle) // obstacle in front, turn right in Stabilize mode g.channel_roll.radio_out -= 500; g.channel_pitch.radio_out = g.channel_pitch.radio_in; g.channel_throttle.radio_out = g.channel_throttle.radio_in; g.channel_rudder.radio_out = g.channel_roll.radio_in; } else { g.channel_roll.calc_pwm(); g.channel_pitch.calc_pwm(); g.channel_rudder.calc_pwm(); g.channel_throttle.radio_out = g.channel_throttle.radio_in; g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get()); } if (control_mode >= FLY_BY_WIRE_B) { // convert 0 to 100% into PWM g.channel_throttle.calc_pwm(); } #if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS // send values to the PWM timers for output // ---------------------------------------- APM_RC.OutputCh(CH_1, g.channel_roll.radio_out); // send to Servos APM_RC.OutputCh(CH_2, g.channel_pitch.radio_out); // send to Servos APM_RC.OutputCh(CH_3, g.channel_throttle.radio_out); // send to Servos APM_RC.OutputCh(CH_4, g.channel_rudder.radio_out); // send to Servos // Route configurable aux. functions to their respective servos g.rc_5.output_ch(CH_5); g.rc_6.output_ch(CH_6); g.rc_7.output_ch(CH_7); g.rc_8.output_ch(CH_8); #endif } static void demo_servos(byte i) { while(i > 0){ gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!")); #if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS APM_RC.OutputCh(1, 1400); mavlink_delay(400); APM_RC.OutputCh(1, 1600); mavlink_delay(200); APM_RC.OutputCh(1, 1500); #endif mavlink_delay(400); i--; } }