// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- // Code by Jon Challinger // // This library is free software; you can redistribute it and / or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. #include #include "AP_YawController.h" const AP_Param::GroupInfo AP_YawController::var_info[] PROGMEM = { AP_GROUPINFO("P", 0, AP_YawController, _kp, 0), AP_GROUPINFO("I", 1, AP_YawController, _ki, 0), AP_GROUPINFO("IMAX", 2, AP_YawController, _imax, 0), AP_GROUPEND }; int32_t AP_YawController::get_servo_out(float scaler, bool stick_movement) { uint32_t tnow = millis(); uint32_t dt = tnow - _last_t; if (_last_t == 0 || dt > 1000) { dt = 0; } _last_t = tnow; if(_ins == NULL) { // can't control without a reference return 0; } float delta_time = (float) dt / 1000.0; if(stick_movement) { if(!_stick_movement) { _stick_movement_begin = tnow; } else { if(_stick_movement_begin < tnow-333) { _freeze_start_time = tnow; } } } _stick_movement = stick_movement; Vector3f accels = _ins->get_accel(); // I didn't pull 512 out of a hat - it is a (very) loose approximation of 100*ToDeg(asin(-accels.y/9.81)) // which, with a P of 1.0, would mean that your rudder angle would be equal to your roll angle when // the plane is still. Thus we have an (approximate) unit to go by. float error = 512 * -accels.y; // strongly filter the error float RC = 1/(2*M_PI*_fCut); error = _last_error + (delta_time / (RC + delta_time)) * (error - _last_error); _last_error = error; // integrator if(_freeze_start_time < (tnow - 2000)) { if ((fabs(_ki) > 0) && (dt > 0)) { _integrator += (error * _ki) * scaler * delta_time; if (_integrator < -_imax) _integrator = -_imax; else if (_integrator > _imax) _integrator = _imax; } } else { _integrator = 0; } return (error * _kp * scaler) + _integrator; } void AP_YawController::reset_I() { _integrator = 0; }