/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* parent class for aircraft simulators */ #pragma once #include #include "SITL.h" #include "SITL_Input.h" #include #include "SIM_Sprayer.h" #include "SIM_Gripper_Servo.h" #include "SIM_Gripper_EPM.h" #include "SIM_Parachute.h" #include "SIM_Precland.h" namespace SITL { /* parent class for all simulator types */ class Aircraft { public: Aircraft(const char *home_str, const char *frame_str); /* set simulation speedup */ void set_speedup(float speedup); /* set instance number */ void set_instance(uint8_t _instance) { instance = _instance; } /* set directory for additional files such as aircraft models */ void set_autotest_dir(const char *_autotest_dir) { autotest_dir = _autotest_dir; } /* Create and set in/out socket for extenal simulator */ virtual void set_interface_ports(const char* address, const int port_in, const int port_out) {}; /* step the FDM by one time step */ virtual void update(const struct sitl_input &input) = 0; /* fill a sitl_fdm structure from the simulator state */ void fill_fdm(struct sitl_fdm &fdm); /* smooth sensors to provide kinematic consistancy */ void smooth_sensors(void); /* return normal distribution random numbers */ static double rand_normal(double mean, double stddev); /* parse a home location string */ static bool parse_home(const char *home_str, Location &loc, float &yaw_degrees); // get frame rate of model in Hz float get_rate_hz(void) const { return rate_hz; } const Vector3f &get_gyro(void) const { return gyro; } const Vector3f &get_velocity_ef(void) const { return velocity_ef; } const Vector3f &get_velocity_air_ef(void) const { return velocity_air_ef; } const Matrix3f &get_dcm(void) const { return dcm; } const Vector3f &get_mag_field_bf(void) const { return mag_bf; } float gross_mass() const { return mass + external_payload_mass; } const Location &get_location() const { return location; } const Vector3f &get_position() const { return position; } void get_attitude(Quaternion &attitude) const { attitude.from_rotation_matrix(dcm); } const Location &get_home() const { return home; } float get_home_yaw() const { return home_yaw; } void set_sprayer(Sprayer *_sprayer) { sprayer = _sprayer; } void set_parachute(Parachute *_parachute) { parachute = _parachute; } void set_gripper_servo(Gripper_Servo *_gripper) { gripper = _gripper; } void set_gripper_epm(Gripper_EPM *_gripper_epm) { gripper_epm = _gripper_epm; } void set_precland(SIM_Precland *_precland); protected: SITL *sitl; Location home; Location location; float ground_level; float home_yaw; float frame_height; Matrix3f dcm; // rotation matrix, APM conventions, from body to earth Vector3f gyro; // rad/s Vector3f gyro_prev; // rad/s Vector3f ang_accel; // rad/s/s Vector3f velocity_ef; // m/s, earth frame Vector3f wind_ef; // m/s, earth frame Vector3f velocity_air_ef; // velocity relative to airmass, earth frame Vector3f velocity_air_bf; // velocity relative to airmass, body frame Vector3f position; // meters, NED from origin float mass; // kg float external_payload_mass = 0.0f; // kg Vector3f accel_body; // m/s/s NED, body frame float airspeed; // m/s, apparent airspeed float airspeed_pitot; // m/s, apparent airspeed, as seen by fwd pitot tube float battery_voltage = -1.0f; float battery_current = 0.0f; float rpm1 = 0; float rpm2 = 0; uint8_t rcin_chan_count = 0; float rcin[8]; float range = -1.0f; // rangefinder detection in m struct { // data from simulated laser scanner, if available struct vector3f_array points; struct float_array ranges; } scanner; // Wind Turbulence simulated Data float turbulence_azimuth = 0.0f; float turbulence_horizontal_speed = 0.0f; // m/s float turbulence_vertical_speed = 0.0f; // m/s Vector3f mag_bf; // local earth magnetic field vector in Gauss, earth frame uint64_t time_now_us; const float gyro_noise; const float accel_noise; float rate_hz; float achieved_rate_hz; float target_speedup; uint64_t frame_time_us; float scaled_frame_time_us; uint64_t last_wall_time_us; uint8_t instance; const char *autotest_dir; const char *frame; bool use_time_sync = true; float last_speedup = -1.0f; // allow for AHRS_ORIENTATION AP_Int8 *ahrs_orientation; enum GroundBehaviour { GROUND_BEHAVIOR_NONE = 0, GROUND_BEHAVIOR_NO_MOVEMENT, GROUND_BEHAVIOR_FWD_ONLY, GROUND_BEHAVIOR_TAILSITTER, } ground_behavior; bool use_smoothing; AP_Terrain *terrain; float ground_height_difference() const; const float FEET_TO_METERS = 0.3048f; const float KNOTS_TO_METERS_PER_SECOND = 0.51444f; virtual bool on_ground() const; // returns height above ground level in metres float hagl() const; // metres /* update location from position */ void update_position(void); /* update body frame magnetic field */ void update_mag_field_bf(void); /* advance time by deltat in seconds */ void time_advance(); /* setup the frame step time */ void setup_frame_time(float rate, float speedup); /* adjust frame_time calculation */ void adjust_frame_time(float rate); /* try to synchronise simulation time with wall clock time, taking into account desired speedup */ void sync_frame_time(void); /* add noise based on throttle level (from 0..1) */ void add_noise(float throttle); /* return wall clock time in microseconds since 1970 */ uint64_t get_wall_time_us(void) const; // update attitude and relative position void update_dynamics(const Vector3f &rot_accel); // update wind vector void update_wind(const struct sitl_input &input); // return filtered servo input as -1 to 1 range float filtered_idx(float v, uint8_t idx); float filtered_servo_angle(const struct sitl_input &input, uint8_t idx); float filtered_servo_range(const struct sitl_input &input, uint8_t idx); // extrapolate sensors by a given delta time in seconds void extrapolate_sensors(float delta_time); // update external payload/sensor dynamic void update_external_payload(const struct sitl_input &input); void add_shove_forces(Vector3f &rot_accel, Vector3f &body_accel); void add_twist_forces(Vector3f &rot_accel); private: uint64_t last_time_us = 0; uint32_t frame_counter = 0; uint32_t last_ground_contact_ms; const uint32_t min_sleep_time; struct { bool enabled; Vector3f accel_body; Vector3f gyro; Matrix3f rotation_b2e; Vector3f position; Vector3f velocity_ef; uint64_t last_update_us; Location location; } smoothing; LowPassFilterFloat servo_filter[4]; Sprayer *sprayer; Gripper_Servo *gripper; Gripper_EPM *gripper_epm; Parachute *parachute; SIM_Precland *precland; }; } // namespace SITL