/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . The Lightware SF45B serial interface is described on this wiki page http://support.lightware.co.za/sf45/#/commands */ #include #include #include #include "AP_Proximity_LightWareSF45B.h" extern const AP_HAL::HAL& hal; static const uint32_t PROXIMITY_SF45B_TIMEOUT_MS = 200; static const uint32_t PROXIMITY_SF45B_REINIT_INTERVAL_MS = 5000; // re-initialise sensor after this many milliseconds static const float PROXIMITY_SF45B_COMBINE_READINGS_DEG = 5.0f; // combine readings from within this many degrees to improve efficiency static const uint32_t PROXIMITY_SF45B_STREAM_DISTANCE_DATA_CM = 5; static const uint8_t PROXIMITY_SF45B_DESIRED_UPDATE_RATE = 8; // 1:48hz, 2:55hz, 3:64hz, 4:77hz, 5:97hz, 6:129hz, 7:194hz, 8:388hz static const uint32_t PROXIMITY_SF45B_DESIRED_FIELDS = ((uint32_t)1 << 0 | (uint32_t)1 << 8); // first return (unfiltered), yaw angle static const uint16_t PROXIMITY_SF45B_DESIRED_FIELD_COUNT = 2; // DISTANCE_DATA_CM message should contain two fields // update the state of the sensor void AP_Proximity_LightWareSF45B::update(void) { if (_uart == nullptr) { return; } // initialise sensor if necessary initialise(); // process incoming messages process_replies(); // check for timeout and set health status if ((_last_distance_received_ms == 0) || ((AP_HAL::millis() - _last_distance_received_ms) > PROXIMITY_SF45B_TIMEOUT_MS)) { set_status(AP_Proximity::Status::NoData); } else { set_status(AP_Proximity::Status::Good); } } // initialise sensor void AP_Proximity_LightWareSF45B::initialise() { // check sensor is configured correctly _init_complete = (_sensor_state.stream_data_type == PROXIMITY_SF45B_STREAM_DISTANCE_DATA_CM) && (_sensor_state.update_rate == PROXIMITY_SF45B_DESIRED_UPDATE_RATE) && (_sensor_state.streaming_fields == PROXIMITY_SF45B_DESIRED_FIELDS); // exit if initialisation requests have been sent within the last few seconds uint32_t now_ms = AP_HAL::millis(); if ((now_ms - _last_init_ms) < PROXIMITY_SF45B_REINIT_INTERVAL_MS) { return; } _last_init_ms = now_ms; // request stream rate and contents request_stream_start(); } // request start of streaming of distances void AP_Proximity_LightWareSF45B::request_stream_start() { // request output rate send_message((uint8_t)MessageID::UPDATE_RATE, true, &PROXIMITY_SF45B_DESIRED_UPDATE_RATE, sizeof(PROXIMITY_SF45B_DESIRED_UPDATE_RATE)); // request first return (unfiltered), and yaw angle send_message((uint8_t)MessageID::DISTANCE_OUTPUT, true, (const uint8_t*)&PROXIMITY_SF45B_DESIRED_FIELDS, sizeof(PROXIMITY_SF45B_DESIRED_FIELDS)); // request start streaming of DISTANCE_DATA_CM messages send_message((uint8_t)MessageID::STREAM, true, (const uint8_t*)&PROXIMITY_SF45B_STREAM_DISTANCE_DATA_CM, sizeof(PROXIMITY_SF45B_STREAM_DISTANCE_DATA_CM)); } // check for replies from sensor void AP_Proximity_LightWareSF45B::process_replies() { if (_uart == nullptr) { return; } // process up to 1K of characters per iteration uint32_t nbytes = MIN(_uart->available(), 1024U); while (nbytes-- > 0) { const int16_t r = _uart->read(); if ((r < 0) || (r > 0xFF)) { continue; } if (parse_byte((uint8_t)r)) { process_message(); } } } // process the latest message held in the _msg structure void AP_Proximity_LightWareSF45B::process_message() { // process payload switch ((MessageID)_msg.msgid) { case MessageID::DISTANCE_OUTPUT: if (_payload_recv == sizeof(uint32_t)) { _sensor_state.streaming_fields = UINT32_VALUE(_msg.payload[3], _msg.payload[2], _msg.payload[1], _msg.payload[0]); } break; case MessageID::STREAM: if (_payload_recv == sizeof(uint32_t)) { _sensor_state.stream_data_type = UINT32_VALUE(_msg.payload[3], _msg.payload[2], _msg.payload[1], _msg.payload[0]); } break; case MessageID::UPDATE_RATE: if (_payload_recv == 1) { _sensor_state.update_rate = _msg.payload[0]; } break; case MessageID::DISTANCE_DATA_CM: { // ignore distance messages until initialisation is complete if (!_init_complete || (_payload_recv != (PROXIMITY_SF45B_DESIRED_FIELD_COUNT * 2))) { break; } _last_distance_received_ms = AP_HAL::millis(); const float distance_m = _distance_filt.apply((int16_t)UINT16_VALUE(_msg.payload[1], _msg.payload[0])) * 0.01f; const float angle_deg = correct_angle_for_orientation((int16_t)UINT16_VALUE(_msg.payload[3], _msg.payload[2]) * 0.01f); // if distance is from a new face then update distance, angle and boundary for previous face // get face from 3D boundary based on yaw angle to the object const AP_Proximity_Boundary_3D::Face face = boundary.get_face(angle_deg); if (face != _face) { if (_face_distance_valid) { boundary.set_face_attributes(_face, _face_yaw_deg, _face_distance); } else { // mark previous face invalid boundary.reset_face(_face); } // record updated face _face = face; _face_yaw_deg = 0; _face_distance = INT16_MAX; _face_distance_valid = false; } // if distance is from a new minisector then update obstacle database using angle and distance from previous minisector const uint8_t minisector = convert_angle_to_minisector(angle_deg); if (minisector != _minisector) { if ((_minisector != UINT8_MAX) && _minisector_distance_valid) { database_push(_minisector_angle, _minisector_distance); } // init mini sector _minisector = minisector; _minisector_angle = 0; _minisector_distance = INT16_MAX; _minisector_distance_valid = false; } // check reading is valid if (!ignore_reading(angle_deg, distance_m) && (distance_m >= distance_min()) && (distance_m <= distance_max())) { // update shortest distance for this face if (!_face_distance_valid || (distance_m < _face_distance)) { _face_yaw_deg = angle_deg; _face_distance = distance_m; _face_distance_valid = true; } // update shortest distance for this mini sector if (distance_m < _minisector_distance) { _minisector_angle = angle_deg; _minisector_distance = distance_m; _minisector_distance_valid = true; } } break; } default: // ignore unsupported messages break; } } // convert an angle (in degrees) to a mini sector number uint8_t AP_Proximity_LightWareSF45B::convert_angle_to_minisector(float angle_deg) const { return wrap_360(angle_deg + (PROXIMITY_SF45B_COMBINE_READINGS_DEG * 0.5f)) / PROXIMITY_SF45B_COMBINE_READINGS_DEG; }