// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Copter.h" #if CLI_ENABLED == ENABLED #if HAL_CPU_CLASS >= HAL_CPU_CLASS_75 #define WITH_ESC_CALIB #endif // Command/function table for the setup menu static const struct Menu::command setup_menu_commands[] PROGMEM = { {"reset", MENU_FUNC(setup_factory)}, {"show", MENU_FUNC(setup_show)}, {"set", MENU_FUNC(setup_set)}, #ifdef WITH_ESC_CALIB {"esc_calib", MENU_FUNC(esc_calib)}, #endif }; // Create the setup menu object. MENU(setup_menu, "setup", setup_menu_commands); // Called from the top-level menu to run the setup menu. int8_t Copter::setup_mode(uint8_t argc, const Menu::arg *argv) { // Give the user some guidance cliSerial->printf_P(PSTR("Setup Mode\n\n\n")); // Run the setup menu. When the menu exits, we will return to the main menu. setup_menu.run(); return 0; } // Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults). // Called by the setup menu 'factoryreset' command. int8_t Copter::setup_factory(uint8_t argc, const Menu::arg *argv) { int16_t c; cliSerial->printf_P(PSTR("\n'Y' = factory reset, any other key to abort:\n")); do { c = cliSerial->read(); } while (-1 == c); if (('y' != c) && ('Y' != c)) return(-1); AP_Param::erase_all(); cliSerial->printf_P(PSTR("\nReboot board")); delay(1000); for (;; ) { } // note, cannot actually return here return(0); } //Set a parameter to a specified value. It will cast the value to the current type of the //parameter and make sure it fits in case of INT8 and INT16 int8_t Copter::setup_set(uint8_t argc, const Menu::arg *argv) { int8_t value_int8; int16_t value_int16; AP_Param *param; enum ap_var_type p_type; if(argc!=3) { cliSerial->printf_P(PSTR("Invalid command. Usage: set \n")); return 0; } param = AP_Param::find(argv[1].str, &p_type); if(!param) { cliSerial->printf_P(PSTR("Param not found: %s\n"), argv[1].str); return 0; } switch(p_type) { case AP_PARAM_INT8: value_int8 = (int8_t)(argv[2].i); if(argv[2].i!=value_int8) { cliSerial->printf_P(PSTR("Value out of range for type INT8\n")); return 0; } ((AP_Int8*)param)->set_and_save(value_int8); break; case AP_PARAM_INT16: value_int16 = (int16_t)(argv[2].i); if(argv[2].i!=value_int16) { cliSerial->printf_P(PSTR("Value out of range for type INT16\n")); return 0; } ((AP_Int16*)param)->set_and_save(value_int16); break; //int32 and float don't need bounds checking, just use the value provoded by Menu::arg case AP_PARAM_INT32: ((AP_Int32*)param)->set_and_save(argv[2].i); break; case AP_PARAM_FLOAT: ((AP_Float*)param)->set_and_save(argv[2].f); break; default: cliSerial->printf_P(PSTR("Cannot set parameter of type %d.\n"), p_type); break; } return 0; } // Print the current configuration. // Called by the setup menu 'show' command. int8_t Copter::setup_show(uint8_t argc, const Menu::arg *argv) { AP_Param *param; ap_var_type type; //If a parameter name is given as an argument to show, print only that parameter if(argc>=2) { param=AP_Param::find(argv[1].str, &type); if(!param) { cliSerial->printf_P(PSTR("Parameter not found: '%s'\n"), argv[1]); return 0; } AP_Param::show(param, argv[1].str, type, cliSerial); return 0; } // clear the area print_blanks(8); report_version(); report_radio(); report_frame(); report_batt_monitor(); report_flight_modes(); report_ins(); report_compass(); report_optflow(); AP_Param::show_all(cliSerial); return(0); } #ifdef WITH_ESC_CALIB #define PWM_CALIB_MIN 1000 #define PWM_CALIB_MAX 2000 #define PWM_HIGHEST_MAX 2200 #define PWM_LOWEST_MAX 1200 #define PWM_HIGHEST_MIN 1800 #define PWM_LOWEST_MIN 800 int8_t Copter::esc_calib(uint8_t argc,const Menu::arg *argv) { char c; unsigned max_channels = 0; uint32_t set_mask = 0; uint16_t pwm_high = PWM_CALIB_MAX; uint16_t pwm_low = PWM_CALIB_MIN; if (argc < 2) { cliSerial->printf_P(PSTR("Pls provide Channel Mask\n" "\tusage: esc_calib 1010 - enables calibration for 2nd and 4th Motor\n")); return(0); } set_mask = strtol (argv[1].str, NULL, 2); if (set_mask == 0) cliSerial->printf_P(PSTR("no channels chosen")); //cliSerial->printf_P(PSTR("\n%d\n"),set_mask); set_mask<<=1; /* wait 50 ms */ hal.scheduler->delay(50); cliSerial->printf_P(PSTR("\nATTENTION, please remove or fix propellers before starting calibration!\n" "\n" "Make sure\n" "\t - that the ESCs are not powered\n" "\t - that safety is off\n" "\t - that the controllers are stopped\n" "\n" "Do you want to start calibration now: y or n?\n")); /* wait for user input */ while (1) { c= cliSerial->read(); if (c == 'y' || c == 'Y') { break; } else if (c == 0x03 || c == 0x63 || c == 'q') { cliSerial->printf_P(PSTR("ESC calibration exited\n")); return(0); } else if (c == 'n' || c == 'N') { cliSerial->printf_P(PSTR("ESC calibration aborted\n")); return(0); } /* rate limit to ~ 20 Hz */ hal.scheduler->delay(50); } /* get number of channels available on the device */ max_channels = AP_MOTORS_MAX_NUM_MOTORS; /* tell IO/FMU that the system is armed (it will output values if safety is off) */ motors.armed(true); cliSerial->printf_P(PSTR("Outputs armed\n")); /* wait for user confirmation */ cliSerial->printf_P(PSTR("\nHigh PWM set: %d\n" "\n" "Connect battery now and hit c+ENTER after the ESCs confirm the first calibration step\n" "\n"), pwm_high); while (1) { /* set max PWM */ for (unsigned i = 0; i < max_channels; i++) { if (set_mask & 1<read(); if (c == 'c') { break; } else if (c == 0x03 || c == 0x63 || c == 'q') { cliSerial->printf_P(PSTR("ESC calibration exited\n")); return(0); } /* rate limit to ~ 20 Hz */ hal.scheduler->delay(50); } cliSerial->printf_P(PSTR("Low PWM set: %d\n" "\n" "Hit c+Enter when finished\n" "\n"), pwm_low); while (1) { /* set disarmed PWM */ for (unsigned i = 0; i < max_channels; i++) { if (set_mask & 1<read(); if (c == 'c') { break; } else if (c == 0x03 || c == 0x63 || c == 'q') { cliSerial->printf_P(PSTR("ESC calibration exited\n")); return(0); } /* rate limit to ~ 20 Hz */ hal.scheduler->delay(50); } /* disarm */ motors.armed(false); cliSerial->printf_P(PSTR("Outputs disarmed\n")); cliSerial->printf_P(PSTR("ESC calibration finished\n")); return(0); } #endif // WITH_ESC_CALIB /***************************************************************************/ // CLI reports /***************************************************************************/ void Copter::report_batt_monitor() { cliSerial->printf_P(PSTR("\nBatt Mon:\n")); print_divider(); if (battery.num_instances() == 0) { print_enabled(false); } else if (!battery.has_current()) { cliSerial->printf_P(PSTR("volts")); } else { cliSerial->printf_P(PSTR("volts and cur")); } print_blanks(2); } void Copter::report_frame() { cliSerial->printf_P(PSTR("Frame\n")); print_divider(); #if FRAME_CONFIG == QUAD_FRAME cliSerial->printf_P(PSTR("Quad frame\n")); #elif FRAME_CONFIG == TRI_FRAME cliSerial->printf_P(PSTR("TRI frame\n")); #elif FRAME_CONFIG == HEXA_FRAME cliSerial->printf_P(PSTR("Hexa frame\n")); #elif FRAME_CONFIG == Y6_FRAME cliSerial->printf_P(PSTR("Y6 frame\n")); #elif FRAME_CONFIG == OCTA_FRAME cliSerial->printf_P(PSTR("Octa frame\n")); #elif FRAME_CONFIG == HELI_FRAME cliSerial->printf_P(PSTR("Heli frame\n")); #endif print_blanks(2); } void Copter::report_radio() { cliSerial->printf_P(PSTR("Radio\n")); print_divider(); // radio print_radio_values(); print_blanks(2); } void Copter::report_ins() { cliSerial->printf_P(PSTR("INS\n")); print_divider(); print_gyro_offsets(); print_accel_offsets_and_scaling(); print_blanks(2); } void Copter::report_flight_modes() { cliSerial->printf_P(PSTR("Flight modes\n")); print_divider(); for(int16_t i = 0; i < 6; i++ ) { print_switch(i, flight_modes[i], BIT_IS_SET(g.simple_modes, i)); } print_blanks(2); } void Copter::report_optflow() { #if OPTFLOW == ENABLED cliSerial->printf_P(PSTR("OptFlow\n")); print_divider(); print_enabled(optflow.enabled()); print_blanks(2); #endif // OPTFLOW == ENABLED } /***************************************************************************/ // CLI utilities /***************************************************************************/ void Copter::print_radio_values() { cliSerial->printf_P(PSTR("CH1: %d | %d\n"), (int)channel_roll->radio_min, (int)channel_roll->radio_max); cliSerial->printf_P(PSTR("CH2: %d | %d\n"), (int)channel_pitch->radio_min, (int)channel_pitch->radio_max); cliSerial->printf_P(PSTR("CH3: %d | %d\n"), (int)channel_throttle->radio_min, (int)channel_throttle->radio_max); cliSerial->printf_P(PSTR("CH4: %d | %d\n"), (int)channel_yaw->radio_min, (int)channel_yaw->radio_max); cliSerial->printf_P(PSTR("CH5: %d | %d\n"), (int)g.rc_5.radio_min, (int)g.rc_5.radio_max); cliSerial->printf_P(PSTR("CH6: %d | %d\n"), (int)g.rc_6.radio_min, (int)g.rc_6.radio_max); cliSerial->printf_P(PSTR("CH7: %d | %d\n"), (int)g.rc_7.radio_min, (int)g.rc_7.radio_max); cliSerial->printf_P(PSTR("CH8: %d | %d\n"), (int)g.rc_8.radio_min, (int)g.rc_8.radio_max); } void Copter::print_switch(uint8_t p, uint8_t m, bool b) { cliSerial->printf_P(PSTR("Pos %d:\t"),p); print_flight_mode(cliSerial, m); cliSerial->printf_P(PSTR(",\t\tSimple: ")); if(b) cliSerial->printf_P(PSTR("ON\n")); else cliSerial->printf_P(PSTR("OFF\n")); } void Copter::print_accel_offsets_and_scaling(void) { const Vector3f &accel_offsets = ins.get_accel_offsets(); const Vector3f &accel_scale = ins.get_accel_scale(); cliSerial->printf_P(PSTR("A_off: %4.2f, %4.2f, %4.2f\nA_scale: %4.2f, %4.2f, %4.2f\n"), (double)accel_offsets.x, // Pitch (double)accel_offsets.y, // Roll (double)accel_offsets.z, // YAW (double)accel_scale.x, // Pitch (double)accel_scale.y, // Roll (double)accel_scale.z); // YAW } void Copter::print_gyro_offsets(void) { const Vector3f &gyro_offsets = ins.get_gyro_offsets(); cliSerial->printf_P(PSTR("G_off: %4.2f, %4.2f, %4.2f\n"), (double)gyro_offsets.x, (double)gyro_offsets.y, (double)gyro_offsets.z); } #endif // CLI_ENABLED // report_compass - displays compass information. Also called by compassmot.pde void Copter::report_compass() { cliSerial->printf_P(PSTR("Compass\n")); print_divider(); print_enabled(g.compass_enabled); // mag declination cliSerial->printf_P(PSTR("Mag Dec: %4.4f\n"), (double)degrees(compass.get_declination())); // mag offsets Vector3f offsets; for (uint8_t i=0; iprintf_P(PSTR("Mag%d off: %4.4f, %4.4f, %4.4f\n"), (int)i, (double)offsets.x, (double)offsets.y, (double)offsets.z); } // motor compensation cliSerial->print_P(PSTR("Motor Comp: ")); if( compass.get_motor_compensation_type() == AP_COMPASS_MOT_COMP_DISABLED ) { cliSerial->print_P(PSTR("Off\n")); }else{ if( compass.get_motor_compensation_type() == AP_COMPASS_MOT_COMP_THROTTLE ) { cliSerial->print_P(PSTR("Throttle")); } if( compass.get_motor_compensation_type() == AP_COMPASS_MOT_COMP_CURRENT ) { cliSerial->print_P(PSTR("Current")); } Vector3f motor_compensation; for (uint8_t i=0; iprintf_P(PSTR("\nComMot%d: %4.2f, %4.2f, %4.2f\n"), (int)i, (double)motor_compensation.x, (double)motor_compensation.y, (double)motor_compensation.z); } } print_blanks(1); } void Copter::print_blanks(int16_t num) { while(num > 0) { num--; cliSerial->println(""); } } void Copter::print_divider(void) { for (int i = 0; i < 40; i++) { cliSerial->print_P(PSTR("-")); } cliSerial->println(); } void Copter::print_enabled(bool b) { if(b) cliSerial->print_P(PSTR("en")); else cliSerial->print_P(PSTR("dis")); cliSerial->print_P(PSTR("abled\n")); } void Copter::report_version() { cliSerial->printf_P(PSTR("FW Ver: %d\n"),(int)g.k_format_version); print_divider(); print_blanks(2); }