/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- void init_pids() { // create limits to how much dampening we'll allow // this creates symmetry with the P gain value preventing oscillations max_stabilize_dampener = g.pid_stabilize_roll.kP() * 2500; // = 0.6 * 2500 = 1500 or 15° max_yaw_dampener = g.pid_yaw.kP() * 6000; // = .5 * 6000 = 3000 } void control_nav_mixer() { // control +- 45° is mixed with the navigation request by the Autopilot // output is in degrees = target pitch and roll of copter g.rc_1.servo_out = g.rc_1.control_mix(nav_roll); g.rc_2.servo_out = g.rc_2.control_mix(nav_pitch); } void fbw_nav_mixer() { // control +- 45° is mixed with the navigation request by the Autopilot // output is in degrees = target pitch and roll of copter g.rc_1.servo_out = nav_roll; g.rc_2.servo_out = nav_pitch; } void output_stabilize_roll() { float error, rate; int dampener; error = g.rc_1.servo_out - dcm.roll_sensor; // limit the error we're feeding to the PID error = constrain(error, -2500, 2500); // write out angles back to servo out - this will be converted to PWM by RC_Channel g.rc_1.servo_out = g.pid_stabilize_roll.get_pid(error, delta_ms_fast_loop, 1.0); // We adjust the output by the rate of rotation: // Rate control through bias corrected gyro rates // omega is the raw gyro reading // Limit dampening to be equal to propotional term for symmetry rate = degrees(omega.x) * 100.0; // 6rad = 34377 dampener = (rate * g.stabilize_dampener); // 34377 * .175 = 6000 g.rc_1.servo_out -= constrain(dampener, -max_stabilize_dampener, max_stabilize_dampener); // limit to 1500 based on kP } void output_stabilize_pitch() { float error, rate; int dampener; error = g.rc_2.servo_out - dcm.pitch_sensor; // limit the error we're feeding to the PID error = constrain(error, -2500, 2500); // write out angles back to servo out - this will be converted to PWM by RC_Channel g.rc_2.servo_out = g.pid_stabilize_pitch.get_pid(error, delta_ms_fast_loop, 1.0); // We adjust the output by the rate of rotation: // Rate control through bias corrected gyro rates // omega is the raw gyro reading // Limit dampening to be equal to propotional term for symmetry rate = degrees(omega.y) * 100.0; // 6rad = 34377 dampener = (rate * g.stabilize_dampener); // 34377 * .175 = 6000 g.rc_2.servo_out -= constrain(dampener, -max_stabilize_dampener, max_stabilize_dampener); // limit to 1500 based on kP } void clear_yaw_control() { //Serial.print("Clear "); rate_yaw_flag = false; // exit rate_yaw_flag nav_yaw = dcm.yaw_sensor; // save our Yaw yaw_error = 0; } void output_yaw_with_hold(boolean hold) { if(hold){ // look to see if we have exited rate control properly - ie stopped turning if(rate_yaw_flag){ // we are still in motion from rate control if(fabs(omega.z) < .5){ clear_yaw_control(); hold = true; // just to be explicit //Serial.print("C"); }else{ // return to rate control until we slow down. hold = false; //Serial.print("D"); } } }else{ // rate control // this indicates we are under rate control, when we enter Yaw Hold and // return to 0° per second, we exit rate control and hold the current Yaw rate_yaw_flag = true; yaw_error = 0; } if(hold){ // try and hold the current nav_yaw setting yaw_error = nav_yaw - dcm.yaw_sensor; // +- 60° yaw_error = wrap_180(yaw_error); // limit the error we're feeding to the PID yaw_error = constrain(yaw_error, -6000, 6000); // limit error to 60 degees // Apply PID and save the new angle back to RC_Channel g.rc_4.servo_out = g.pid_yaw.get_pid(yaw_error, delta_ms_fast_loop, 1.0); // .5 * 6000 = 3000 // We adjust the output by the rate of rotation long rate = degrees(omega.z) * 100.0; // 3rad = 17188 , 6rad = 34377 int dampener = ((float)rate * g.hold_yaw_dampener); // 18000 * .17 = 3000 // Limit dampening to be equal to propotional term for symmetry g.rc_4.servo_out -= constrain(dampener, -max_yaw_dampener, max_yaw_dampener); // -3000 }else{ // rate control long rate = degrees(omega.z) * 100; // 3rad = 17188 , 6rad = 34377 rate = constrain(rate, -36000, 36000); // limit to something fun! long error = ((long)g.rc_4.control_in * 6) - rate; // control is += 6000 * 6 = 36000 // -error = CCW, +error = CW if(g.rc_4.control_in == 0){ // we are breaking; g.rc_4.servo_out = (omega.z > 0) ? -1800 : 1800; //switch comments to get old behavior. //g.rc_4.servo_out = g.pid_acro_rate_yaw.get_pid(error, delta_ms_fast_loop, 1.0);// kP .07 * 36000 = 2520 }else{ g.rc_4.servo_out = g.pid_acro_rate_yaw.get_pid(error, delta_ms_fast_loop, 1.0);// kP .07 * 36000 = 2520 } g.rc_4.servo_out = constrain(g.rc_4.servo_out, -1800, 1800); // limit to 24° } } // slight left rudder gives right roll. void output_rate_roll() { // rate control long rate = degrees(omega.x) * 100; // 3rad = 17188 , 6rad = 34377 rate = constrain(rate, -36000, 36000); // limit to something fun! long error = ((long)g.rc_1.control_in * 8) - rate; // control is += 4500 * 8 = 36000 g.rc_1.servo_out = g.pid_acro_rate_roll.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700 g.rc_1.servo_out = constrain(g.rc_1.servo_out, -2400, 2400); // limit to 2400 } void output_rate_pitch() { // rate control long rate = degrees(omega.y) * 100; // 3rad = 17188 , 6rad = 34377 rate = constrain(rate, -36000, 36000); // limit to something fun! long error = ((long)g.rc_2.control_in * 8) - rate; // control is += 4500 * 8 = 36000 g.rc_2.servo_out = g.pid_acro_rate_pitch.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700 g.rc_2.servo_out = constrain(g.rc_2.servo_out, -2400, 2400); // limit to 2400 } // Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc. // Keeps outdated data out of our calculations void reset_I(void) { g.pid_nav_lat.reset_I(); g.pid_nav_lon.reset_I(); g.pid_baro_throttle.reset_I(); g.pid_sonar_throttle.reset_I(); } /************************************************************* throttle control ****************************************************************/ // user input: // ----------- void output_manual_throttle() { g.rc_3.servo_out = (float)g.rc_3.control_in * angle_boost(); } // Autopilot // --------- void output_auto_throttle() { g.rc_3.servo_out = (float)nav_throttle * angle_boost(); // make sure we never send a 0 throttle that will cut the motors g.rc_3.servo_out = max(g.rc_3.servo_out, 1); } void calc_nav_throttle() { // limit error long error = constrain(altitude_error, -400, 400); float scaler = 1.0; if(error < 0){ scaler = (altitude_sensor == BARO) ? .5 : .5; } if(altitude_sensor == BARO){ nav_throttle = g.pid_baro_throttle.get_pid(error, delta_ms_fast_loop, scaler); nav_throttle = g.throttle_cruise + constrain(nav_throttle, -30, 80); }else{ nav_throttle = g.pid_sonar_throttle.get_pid(error, delta_ms_fast_loop, scaler); nav_throttle = g.throttle_cruise + constrain(nav_throttle, -60, 100); } nav_throttle = (nav_throttle + nav_throttle_old) >> 1; nav_throttle_old = nav_throttle; //Serial.printf("nav_thr %d, scaler %2.2f ", nav_throttle, scaler); } float angle_boost() { float temp = cos_pitch_x * cos_roll_x; temp = 2.0 - constrain(temp, .7, 1.0); return temp; } /************************************************************* yaw control ****************************************************************/ void output_manual_yaw() { if(g.rc_3.control_in == 0){ clear_yaw_control(); }else{ // Yaw control if(g.rc_4.control_in == 0){ output_yaw_with_hold(true); // hold yaw }else{ output_yaw_with_hold(false); // rate control yaw } } } void auto_yaw() { if(yaw_tracking & TRACK_NEXT_WP){ nav_yaw = target_bearing; } output_yaw_with_hold(true); // hold yaw }