#pragma once /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AHRS (Attitude Heading Reference System) interface for ArduPilot * */ #include #include #include #include #include #include #include class OpticalFlow; #define AP_AHRS_TRIM_LIMIT 10.0f // maximum trim angle in degrees #define AP_AHRS_RP_P_MIN 0.05f // minimum value for AHRS_RP_P parameter #define AP_AHRS_YAW_P_MIN 0.05f // minimum value for AHRS_YAW_P parameter enum class GPSUse : uint8_t { Disable = 0, Enable = 1, EnableWithHeight = 2, }; class AP_AHRS_Backend { public: // Constructor AP_AHRS_Backend() {} // empty virtual destructor virtual ~AP_AHRS_Backend() {} CLASS_NO_COPY(AP_AHRS_Backend); // structure to retrieve results from backends: struct Estimates { float roll_rad; float pitch_rad; float yaw_rad; Matrix3f dcm_matrix; Vector3f gyro_estimate; Vector3f gyro_drift; Vector3f accel_ef[INS_MAX_INSTANCES]; // must be INS_MAX_INSTANCES Vector3f accel_ef_blended; }; // init sets up INS board orientation virtual void init(); // return the index of the primary core or -1 if no primary core selected virtual int8_t get_primary_core_index() const { return -1; } // get the index of the current primary accelerometer sensor virtual uint8_t get_primary_accel_index(void) const { return AP::ins().get_primary_accel(); } // get the index of the current primary gyro sensor virtual uint8_t get_primary_gyro_index(void) const { return AP::ins().get_primary_gyro(); } // Methods virtual void update() = 0; virtual void get_results(Estimates &results) = 0; // returns false if we fail arming checks, in which case the buffer will be populated with a failure message // requires_position should be true if horizontal position configuration should be checked virtual bool pre_arm_check(bool requires_position, char *failure_msg, uint8_t failure_msg_len) const = 0; // check all cores providing consistent attitudes for prearm checks virtual bool attitudes_consistent(char *failure_msg, const uint8_t failure_msg_len) const { return true; } // see if EKF lane switching is possible to avoid EKF failsafe virtual void check_lane_switch(void) {} // check if non-compass sensor is providing yaw. Allows compass pre-arm checks to be bypassed virtual bool using_noncompass_for_yaw(void) const { return false; } // check if external nav is providing yaw virtual bool using_extnav_for_yaw(void) const { return false; } // request EKF yaw reset to try and avoid the need for an EKF lane switch or failsafe virtual void request_yaw_reset(void) {} // set position, velocity and yaw sources to either 0=primary, 1=secondary, 2=tertiary virtual void set_posvelyaw_source_set(uint8_t source_set_idx) {} // reset the current gyro drift estimate // should be called if gyro offsets are recalculated virtual void reset_gyro_drift(void) = 0; // reset the current attitude, used on new IMU calibration virtual void reset() = 0; // get our current position estimate. Return true if a position is available, // otherwise false. This call fills in lat, lng and alt virtual bool get_position(struct Location &loc) const WARN_IF_UNUSED = 0; // get latest altitude estimate above ground level in meters and validity flag virtual bool get_hagl(float &height) const WARN_IF_UNUSED { return false; } // return a wind estimation vector, in m/s virtual Vector3f wind_estimate(void) const = 0; // return an airspeed estimate if available. return true // if we have an estimate virtual bool airspeed_estimate(float &airspeed_ret) const WARN_IF_UNUSED { return false; } virtual bool airspeed_estimate(uint8_t airspeed_index, float &airspeed_ret) const { return false; } // return a true airspeed estimate (navigation airspeed) if // available. return true if we have an estimate bool airspeed_estimate_true(float &airspeed_ret) const WARN_IF_UNUSED { if (!airspeed_estimate(airspeed_ret)) { return false; } airspeed_ret *= get_EAS2TAS(); return true; } // return estimate of true airspeed vector in body frame in m/s // returns false if estimate is unavailable virtual bool airspeed_vector_true(Vector3f &vec) const WARN_IF_UNUSED { return false; } // return a synthetic airspeed estimate (one derived from sensors // other than an actual airspeed sensor), if available. return // true if we have a synthetic airspeed. ret will not be modified // on failure. virtual bool synthetic_airspeed(float &ret) const WARN_IF_UNUSED = 0; // get apparent to true airspeed ratio float get_EAS2TAS(void) const; // return true if airspeed comes from an airspeed sensor, as // opposed to an IMU estimate bool airspeed_sensor_enabled(void) const { const AP_Airspeed *_airspeed = AP::airspeed(); return _airspeed != nullptr && _airspeed->use() && _airspeed->healthy(); } // return true if airspeed comes from a specific airspeed sensor, as // opposed to an IMU estimate bool airspeed_sensor_enabled(uint8_t airspeed_index) const { const AP_Airspeed *_airspeed = AP::airspeed(); return _airspeed != nullptr && _airspeed->use(airspeed_index) && _airspeed->healthy(airspeed_index); } // return a ground vector estimate in meters/second, in North/East order virtual Vector2f groundspeed_vector(void) = 0; // return a ground velocity in meters/second, North/East/Down // order. This will only be accurate if have_inertial_nav() is // true virtual bool get_velocity_NED(Vector3f &vec) const WARN_IF_UNUSED { return false; } // Get a derivative of the vertical position in m/s which is kinematically consistent with the vertical position is required by some control loops. // This is different to the vertical velocity from the EKF which is not always consistent with the vertical position due to the various errors that are being corrected for. virtual bool get_vert_pos_rate(float &velocity) const = 0; // returns the estimated magnetic field offsets in body frame virtual bool get_mag_field_correction(Vector3f &ret) const WARN_IF_UNUSED { return false; } virtual bool get_mag_field_NED(Vector3f &vec) const { return false; } virtual bool get_mag_offsets(uint8_t mag_idx, Vector3f &magOffsets) const { return false; } // virtual bool set_origin(const Location &loc) { return false; } virtual bool get_origin(Location &ret) const = 0; // return a position relative to origin in meters, North/East/Down // order. This will only be accurate if have_inertial_nav() is // true virtual bool get_relative_position_NED_origin(Vector3f &vec) const WARN_IF_UNUSED { return false; } // return a position relative to origin in meters, North/East // order. Return true if estimate is valid virtual bool get_relative_position_NE_origin(Vector2f &vecNE) const WARN_IF_UNUSED { return false; } // return a Down position relative to origin in meters // Return true if estimate is valid virtual bool get_relative_position_D_origin(float &posD) const WARN_IF_UNUSED { return false; } // return ground speed estimate in meters/second. Used by ground vehicles. float groundspeed(void) { return groundspeed_vector().length(); } // return true if we will use compass for yaw virtual bool use_compass(void) = 0; // return the quaternion defining the rotation from NED to XYZ (body) axes virtual bool get_quaternion(Quaternion &quat) const WARN_IF_UNUSED = 0; // return true if the AHRS object supports inertial navigation, // with very accurate position and velocity virtual bool have_inertial_nav(void) const { return false; } // is the AHRS subsystem healthy? virtual bool healthy(void) const = 0; // true if the AHRS has completed initialisation virtual bool initialised(void) const { return true; }; virtual bool started(void) const { return initialised(); }; // return the amount of yaw angle change due to the last yaw angle reset in radians // returns the time of the last yaw angle reset or 0 if no reset has ever occurred virtual uint32_t getLastYawResetAngle(float &yawAng) { return 0; }; // return the amount of NE position change in metres due to the last reset // returns the time of the last reset or 0 if no reset has ever occurred virtual uint32_t getLastPosNorthEastReset(Vector2f &pos) WARN_IF_UNUSED { return 0; }; // return the amount of NE velocity change in metres/sec due to the last reset // returns the time of the last reset or 0 if no reset has ever occurred virtual uint32_t getLastVelNorthEastReset(Vector2f &vel) const WARN_IF_UNUSED { return 0; }; // return the amount of vertical position change due to the last reset in meters // returns the time of the last reset or 0 if no reset has ever occurred virtual uint32_t getLastPosDownReset(float &posDelta) WARN_IF_UNUSED { return 0; }; // Resets the baro so that it reads zero at the current height // Resets the EKF height to zero // Adjusts the EKf origin height so that the EKF height + origin height is the same as before // Returns true if the height datum reset has been performed // If using a range finder for height no reset is performed and it returns false virtual bool resetHeightDatum(void) WARN_IF_UNUSED { return false; } // return the innovations for the specified instance // An out of range instance (eg -1) returns data for the primary instance virtual bool get_innovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) const { return false; } virtual bool get_filter_status(nav_filter_status &status) const { return false; } // get_variances - provides the innovations normalised using the innovation variance where a value of 0 // indicates perfect consistency between the measurement and the EKF solution and a value of of 1 is the maximum // inconsistency that will be accepted by the filter // boolean false is returned if variances are not available virtual bool get_variances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar) const { return false; } // get a source's velocity innovations. source should be from 0 to 7 (see AP_NavEKF_Source::SourceXY) // returns true on success and results are placed in innovations and variances arguments virtual bool get_vel_innovations_and_variances_for_source(uint8_t source, Vector3f &innovations, Vector3f &variances) const WARN_IF_UNUSED { return false; } virtual void send_ekf_status_report(mavlink_channel_t chan) const = 0; // Retrieves the corrected NED delta velocity in use by the inertial navigation virtual void getCorrectedDeltaVelocityNED(Vector3f& ret, float& dt) const { ret.zero(); AP::ins().get_delta_velocity(ret, dt); } // get_hgt_ctrl_limit - get maximum height to be observed by the // control loops in meters and a validity flag. It will return // false when no limiting is required virtual bool get_hgt_ctrl_limit(float &limit) const WARN_IF_UNUSED { return false; }; // Set to true if the terrain underneath is stable enough to be used as a height reference // this is not related to terrain following virtual void set_terrain_hgt_stable(bool stable) {} };