/// @file AC_PID.cpp /// @brief Generic PID algorithm #include #include "AC_PID.h" const AP_Param::GroupInfo AC_PID::var_info[] = { // @Param: P // @DisplayName: PID Proportional Gain // @Description: P Gain which produces an output value that is proportional to the current error value AP_GROUPINFO("P", 0, AC_PID, _kp, 0), // @Param: I // @DisplayName: PID Integral Gain // @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error AP_GROUPINFO("I", 1, AC_PID, _ki, 0), // @Param: D // @DisplayName: PID Derivative Gain // @Description: D Gain which produces an output that is proportional to the rate of change of the error AP_GROUPINFO("D", 2, AC_PID, _kd, 0), // 3 was for uint16 IMAX // @Param: FF // @DisplayName: FF FeedForward Gain // @Description: FF Gain which produces an output value that is proportional to the demanded input AP_GROUPINFO("FF", 4, AC_PID, _kff, 0), // @Param: IMAX // @DisplayName: PID Integral Maximum // @Description: The maximum/minimum value that the I term can output AP_GROUPINFO("IMAX", 5, AC_PID, _kimax, 0), // 6 was for float FILT // 7 is for float ILMI and FF // index 8 was for AFF // @Param: FLTT // @DisplayName: PID Target filter frequency in Hz // @Description: Target filter frequency in Hz // @Units: Hz AP_GROUPINFO("FLTT", 9, AC_PID, _filt_T_hz, AC_PID_TFILT_HZ_DEFAULT), // @Param: FLTE // @DisplayName: PID Error filter frequency in Hz // @Description: Error filter frequency in Hz // @Units: Hz AP_GROUPINFO("FLTE", 10, AC_PID, _filt_E_hz, AC_PID_EFILT_HZ_DEFAULT), // @Param: FLTD // @DisplayName: PID Derivative term filter frequency in Hz // @Description: Derivative filter frequency in Hz // @Units: Hz AP_GROUPINFO("FLTD", 11, AC_PID, _filt_D_hz, AC_PID_DFILT_HZ_DEFAULT), // @Param: SMAX // @DisplayName: Slew rate limit // @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature. // @Range: 0 200 // @Increment: 0.5 // @User: Advanced AP_GROUPINFO("SMAX", 12, AC_PID, _slew_rate_max, 0), AP_GROUPEND }; // Constructor AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz, float dt, float initial_srmax, float initial_srtau): _dt(dt) { // load parameter values from eeprom AP_Param::setup_object_defaults(this, var_info); _kp = initial_p; _ki = initial_i; _kd = initial_d; _kff = initial_ff; _kimax = fabsf(initial_imax); filt_T_hz(initial_filt_T_hz); filt_E_hz(initial_filt_E_hz); filt_D_hz(initial_filt_D_hz); _slew_rate_max.set(initial_srmax); _slew_rate_tau.set(initial_srtau); // reset input filter to first value received _flags._reset_filter = true; memset(&_pid_info, 0, sizeof(_pid_info)); // slew limit scaler allows for plane to use degrees/sec slew // limit _slew_limit_scale = 1; } // set_dt - set time step in seconds void AC_PID::set_dt(float dt) { // set dt and calculate the input filter alpha _dt = dt; } // filt_T_hz - set target filter hz void AC_PID::filt_T_hz(float hz) { _filt_T_hz.set(fabsf(hz)); } // filt_E_hz - set error filter hz void AC_PID::filt_E_hz(float hz) { _filt_E_hz.set(fabsf(hz)); } // filt_D_hz - set derivative filter hz void AC_PID::filt_D_hz(float hz) { _filt_D_hz.set(fabsf(hz)); } // slew_limit - set slew limit void AC_PID::slew_limit(float smax) { _slew_rate_max.set(fabsf(smax)); } // update_all - set target and measured inputs to PID controller and calculate outputs // target and error are filtered // the derivative is then calculated and filtered // the integral is then updated based on the setting of the limit flag float AC_PID::update_all(float target, float measurement, bool limit) { // don't process inf or NaN if (!isfinite(target) || !isfinite(measurement)) { return 0.0f; } // reset input filter to value received if (_flags._reset_filter) { _flags._reset_filter = false; _target = target; _error = _target - measurement; _derivative = 0.0f; } else { float error_last = _error; _target += get_filt_T_alpha() * (target - _target); _error += get_filt_E_alpha() * ((_target - measurement) - _error); // calculate and filter derivative if (_dt > 0.0f) { float derivative = (_error - error_last) / _dt; _derivative += get_filt_D_alpha() * (derivative - _derivative); } } // update I term update_i(limit); float P_out = (_error * _kp); float D_out = (_derivative * _kd); // calculate slew limit modifier for P+D _pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, _dt); _pid_info.slew_rate = _slew_limiter.get_slew_rate(); P_out *= _pid_info.Dmod; D_out *= _pid_info.Dmod; _pid_info.target = _target; _pid_info.actual = measurement; _pid_info.error = _error; _pid_info.P = P_out; _pid_info.D = D_out; return P_out + _integrator + D_out; } // update_error - set error input to PID controller and calculate outputs // target is set to zero and error is set and filtered // the derivative then is calculated and filtered // the integral is then updated based on the setting of the limit flag // Target and Measured must be set manually for logging purposes. // todo: remove function when it is no longer used. float AC_PID::update_error(float error, bool limit) { // don't process inf or NaN if (!isfinite(error)) { return 0.0f; } _target = 0.0f; // reset input filter to value received if (_flags._reset_filter) { _flags._reset_filter = false; _error = error; _derivative = 0.0f; } else { float error_last = _error; _error += get_filt_E_alpha() * (error - _error); // calculate and filter derivative if (_dt > 0.0f) { float derivative = (_error - error_last) / _dt; _derivative += get_filt_D_alpha() * (derivative - _derivative); } } // update I term update_i(limit); float P_out = (_error * _kp); float D_out = (_derivative * _kd); // calculate slew limit modifier for P+D _pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, _dt); _pid_info.slew_rate = _slew_limiter.get_slew_rate(); P_out *= _pid_info.Dmod; D_out *= _pid_info.Dmod; _pid_info.target = 0.0f; _pid_info.actual = 0.0f; _pid_info.error = _error; _pid_info.P = P_out; _pid_info.D = D_out; return P_out + _integrator + D_out; } // update_i - update the integral // If the limit flag is set the integral is only allowed to shrink void AC_PID::update_i(bool limit) { if (!is_zero(_ki) && is_positive(_dt)) { // Ensure that integrator can only be reduced if the output is saturated if (!limit || ((is_positive(_integrator) && is_negative(_error)) || (is_negative(_integrator) && is_positive(_error)))) { _integrator += ((float)_error * _ki) * _dt; _integrator = constrain_float(_integrator, -_kimax, _kimax); } } else { _integrator = 0.0f; } _pid_info.I = _integrator; _pid_info.limit = limit; } float AC_PID::get_p() const { return _error * _kp; } float AC_PID::get_i() const { return _integrator; } float AC_PID::get_d() const { return _kd * _derivative; } float AC_PID::get_ff() { _pid_info.FF = _target * _kff; return _target * _kff; } void AC_PID::reset_I() { _integrator = 0; } void AC_PID::reset_I_smoothly() { float reset_time = AC_PID_RESET_TC * 3.0f; uint64_t now = AP_HAL::micros64(); if ((now - _reset_last_update) > 5e5 ) { _reset_counter = 0; } if ((float)_reset_counter < (reset_time/_dt)) { _integrator = _integrator - (_dt / (_dt + AC_PID_RESET_TC)) * _integrator; _reset_counter++; } else { _integrator = 0; } _reset_last_update = now; } void AC_PID::load_gains() { _kp.load(); _ki.load(); _kd.load(); _kff.load(); _kimax.load(); _kimax = fabsf(_kimax); _filt_T_hz.load(); _filt_E_hz.load(); _filt_D_hz.load(); } // save_gains - save gains to eeprom void AC_PID::save_gains() { _kp.save(); _ki.save(); _kd.save(); _kff.save(); _kimax.save(); _filt_T_hz.save(); _filt_E_hz.save(); _filt_D_hz.save(); } /// Overload the function call operator to permit easy initialisation void AC_PID::operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz, float dt) { _kp = p_val; _ki = i_val; _kd = d_val; _kff = ff_val; _kimax = fabsf(imax_val); _filt_T_hz = input_filt_T_hz; _filt_E_hz = input_filt_E_hz; _filt_D_hz = input_filt_D_hz; _dt = dt; } // get_filt_T_alpha - get the target filter alpha float AC_PID::get_filt_T_alpha() const { return get_filt_alpha(_filt_T_hz); } // get_filt_E_alpha - get the error filter alpha float AC_PID::get_filt_E_alpha() const { return get_filt_alpha(_filt_E_hz); } // get_filt_D_alpha - get the derivative filter alpha float AC_PID::get_filt_D_alpha() const { return get_filt_alpha(_filt_D_hz); } // get_filt_alpha - calculate a filter alpha float AC_PID::get_filt_alpha(float filt_hz) const { return calc_lowpass_alpha_dt(_dt, filt_hz); } void AC_PID::set_integrator(float target, float measurement, float i) { set_integrator(target - measurement, i); } void AC_PID::set_integrator(float error, float i) { _integrator = constrain_float(i - error * _kp, -_kimax, _kimax); _pid_info.I = _integrator; } void AC_PID::set_integrator(float i) { _integrator = constrain_float(i, -_kimax, _kimax); _pid_info.I = _integrator; }