/* block based logging, for boards with flash logging */ #include "AP_Logger_config.h" #if HAL_LOGGING_BLOCK_ENABLED #include "AP_Logger_Block.h" #include "AP_Logger.h" #include #include #include #include const extern AP_HAL::HAL& hal; // the last page holds the log format in first 4 bytes. Please change // this if (and only if!) the low level format changes #define DF_LOGGING_FORMAT 0x1901201B AP_Logger_Block::AP_Logger_Block(AP_Logger &front, LoggerMessageWriter_DFLogStart *writer) : AP_Logger_Backend(front, writer), writebuf(0) { df_stats_clear(); } // Init() is called after driver Init(), it is the responsibility of the driver to make sure the // device is ready to accept commands before Init() is called void AP_Logger_Block::Init(void) { // buffer is used for both reads and writes so access must always be within the semaphore buffer = (uint8_t *)hal.util->malloc_type(df_PageSize, AP_HAL::Util::MEM_DMA_SAFE); if (buffer == nullptr) { AP_HAL::panic("Out of DMA memory for logging"); } //flash_test(); if (CardInserted()) { // reserve space for version in last sector df_NumPages -= df_PagePerBlock; // determine and limit file backend buffersize uint32_t bufsize = _front._params.file_bufsize; if (bufsize > 64) { bufsize = 64; } bufsize *= 1024; // If we can't allocate the full size, try to reduce it until we can allocate it while (!writebuf.set_size(bufsize) && bufsize >= df_PageSize * df_PagePerBlock) { DEV_PRINTF("AP_Logger_Block: Couldn't set buffer size to=%u\n", (unsigned)bufsize); bufsize >>= 1; } if (!writebuf.get_size()) { DEV_PRINTF("Out of memory for logging\n"); return; } DEV_PRINTF("AP_Logger_Block: buffer size=%u\n", (unsigned)bufsize); _initialised = true; } WITH_SEMAPHORE(sem); if (NeedErase()) { EraseAll(); } else { validate_log_structure(); } } uint32_t AP_Logger_Block::bufferspace_available() { // because AP_Logger_Block devices are ring buffers, we *always* // have room... return df_NumPages * df_PageSize; } // *** LOGGER PUBLIC FUNCTIONS *** void AP_Logger_Block::StartWrite(uint32_t PageAdr) { df_PageAdr = PageAdr; } void AP_Logger_Block::FinishWrite(void) { // Write Buffer to flash BufferToPage(df_PageAdr); df_PageAdr++; // If we reach the end of the memory, start from the beginning if (df_PageAdr > df_NumPages) { df_PageAdr = 1; } // when starting a new sector, erase it if ((df_PageAdr-1) % df_PagePerBlock == 0) { // if we have wrapped over an existing log, force the oldest to be recalculated if (_cached_oldest_log > 0) { uint16_t log_num = StartRead(df_PageAdr); if (log_num != 0xFFFF && log_num >= _cached_oldest_log) { _cached_oldest_log = 0; } } // are we about to erase a sector with our own headers in it? if (df_Write_FilePage > df_NumPages - df_PagePerBlock) { chip_full = true; return; } SectorErase(get_block(df_PageAdr)); } } bool AP_Logger_Block::WritesOK() const { if (!CardInserted() || erase_started) { return false; } return true; } bool AP_Logger_Block::_WritePrioritisedBlock(const void *pBuffer, uint16_t size, bool is_critical) { // is_critical is ignored - we're a ring buffer and never run out // of space. possibly if we do more complicated bandwidth // limiting we can reserve bandwidth based on is_critical if (!WritesOK()) { return false; } if (!WriteBlockCheckStartupMessages()) { _dropped++; return false; } WITH_SEMAPHORE(write_sem); const uint32_t space = writebuf.space(); if (_writing_startup_messages && _startup_messagewriter->fmt_done()) { // the state machine has called us, and it has finished // writing format messages out. It can always get back to us // with more messages later, so let's leave room for other // things: const uint32_t now = AP_HAL::millis(); const bool must_dribble = (now - last_messagewrite_message_sent) > 100; if (!must_dribble && space < non_messagewriter_message_reserved_space(writebuf.get_size())) { // this message isn't dropped, it will be sent again... return false; } last_messagewrite_message_sent = now; } else { // we reserve some amount of space for critical messages: if (!is_critical && space < critical_message_reserved_space(writebuf.get_size())) { _dropped++; return false; } } // if no room for entire message - drop it: if (space < size) { _dropped++; return false; } writebuf.write((uint8_t*)pBuffer, size); df_stats_gather(size, writebuf.space()); return true; } // read from the page address and return the file number at that location uint16_t AP_Logger_Block::StartRead(uint32_t PageAdr) { // copy flash page to buffer if (erase_started) { df_Read_PageAdr = PageAdr; memset(buffer, 0xff, df_PageSize); } else { PageToBuffer(PageAdr); } return ReadHeaders(); } // read the headers at the current read point returning the file number uint16_t AP_Logger_Block::ReadHeaders() { // We are starting a new page - read FileNumber and FilePage struct PageHeader ph; BlockRead(0, &ph, sizeof(ph)); df_FileNumber = ph.FileNumber; df_FilePage = ph.FilePage; #if BLOCK_LOG_VALIDATE if (ph.crc != DF_LOGGING_FORMAT + df_FilePage && df_FileNumber != 0xFFFF) { printf("ReadHeaders: invalid block read at %d\n", df_Read_PageAdr); } #endif df_Read_BufferIdx = sizeof(ph); // we are at the start of a file, read the file header if (df_FilePage == 1) { struct FileHeader fh; BlockRead(sizeof(ph), &fh, sizeof(fh)); df_FileTime = fh.utc_secs; df_Read_BufferIdx += sizeof(fh); } return df_FileNumber; } bool AP_Logger_Block::ReadBlock(void *pBuffer, uint16_t size) { if (erase_started) { return false; } while (size > 0) { uint16_t n = df_PageSize - df_Read_BufferIdx; if (n > size) { n = size; } if (!BlockRead(df_Read_BufferIdx, pBuffer, n)) { return false; } size -= n; pBuffer = (void *)(n + (uintptr_t)pBuffer); df_Read_BufferIdx += n; if (df_Read_BufferIdx == df_PageSize) { uint32_t new_page_addr = df_Read_PageAdr + 1; if (new_page_addr > df_NumPages) { new_page_addr = 1; } if (erase_started) { memset(buffer, 0xff, df_PageSize); df_Read_PageAdr = new_page_addr; } else { PageToBuffer(new_page_addr); } // We are starting a new page - read FileNumber and FilePage ReadHeaders(); } } return true; } // initialize the log data for the given file number void AP_Logger_Block::StartLogFile(uint16_t FileNumber) { df_FileNumber = FileNumber; df_Write_FileNumber = FileNumber; df_FilePage = 1; df_Write_FilePage = 1; } uint16_t AP_Logger_Block::GetFileNumber() const { return df_FileNumber; } void AP_Logger_Block::EraseAll() { if (hal.util->get_soft_armed()) { // do not want to do any filesystem operations while we are e.g. flying return; } // push out the message before stopping logging if (!erase_started) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Chip erase started"); } WITH_SEMAPHORE(sem); if (erase_started) { // already erasing return; } erase_started = true; // remember what we were doing new_log_pending = log_write_started; // throw away everything log_write_started = false; writebuf.clear(); // reset the format version and wrapped status so that any incomplete erase will be caught Sector4kErase(get_sector(df_NumPages)); StartErase(); } void AP_Logger_Block::periodic_1Hz() { AP_Logger_Backend::periodic_1Hz(); if (rate_limiter == nullptr && (_front._params.blk_ratemax > 0 || _front._params.disarm_ratemax > 0 || _front._log_pause)) { // setup rate limiting if log rate max > 0Hz or log pause of streaming entries is requested rate_limiter = new AP_Logger_RateLimiter(_front, _front._params.blk_ratemax, _front._params.disarm_ratemax); } if (!io_thread_alive()) { if (warning_decimation_counter == 0 && _initialised) { // we don't print this error unless we did initialise. When _initialised is set to true // we register the IO timer callback GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "AP_Logger: IO thread died"); } if (warning_decimation_counter++ > 57) { warning_decimation_counter = 0; } _initialised = false; } else if (chip_full) { if (warning_decimation_counter == 0) { GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Chip full, logging stopped"); } if (warning_decimation_counter++ > 57) { warning_decimation_counter = 0; } } } // EraseAll is asynchronous, but we must not start a new // log in a child thread so this task picks up the hint from the io timer // keeping locking to a minimum void AP_Logger_Block::periodic_10Hz(const uint32_t now) { if (erase_started || InErase()) { return; } // don't print status messages in io thread, do it here switch (status_msg) { case StatusMessage::ERASE_COMPLETE: GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Chip erase complete"); status_msg = StatusMessage::NONE; break; case StatusMessage::RECOVERY_COMPLETE: GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Log recovery complete"); status_msg = StatusMessage::NONE; break; case StatusMessage::NONE: break; } // EraseAll should only set this in the main thread if (new_log_pending) { start_new_log(); } } /* * we need to erase if the logging format has changed */ bool AP_Logger_Block::NeedErase(void) { uint32_t version = 0; PageToBuffer(df_NumPages+1); // last page BlockRead(0, &version, sizeof(version)); if (version == DF_LOGGING_FORMAT) { // only leave the read point in a sane place if we are not about to destroy everything StartRead(1); return false; } return true; } /* * iterate through all of the logs files looking for ones that are corrupted and correct. */ void AP_Logger_Block::validate_log_structure() { WITH_SEMAPHORE(sem); bool wrapped = is_wrapped(); uint32_t page = 1; uint32_t page_start = 1; uint16_t file = StartRead(page); uint16_t first_file = file; uint16_t next_file = file; uint16_t last_file = 0; while (file != 0xFFFF && page <= df_NumPages && (file == next_file || (wrapped && file < next_file))) { uint32_t end_page = find_last_page_of_log(file); if (end_page == 0 || end_page < page) { // this can happen and may be responsible for corruption that we have seen break; } page = end_page + 1; file = StartRead(page); next_file++; // skip over the rest of an erased block if (wrapped && file == 0xFFFF) { file = StartRead((get_block(page) + 1) * df_PagePerBlock + 1); } if (wrapped && file < next_file) { page_start = page; next_file = file; first_file = file; } else if (last_file < next_file) { last_file = file; } if (file == next_file) { DEV_PRINTF("Found complete log %d at %X-%X\n", int(file), unsigned(page), unsigned(find_last_page_of_log(file))); } } if (file != 0xFFFF && file != next_file && page <= df_NumPages && page > 0) { DEV_PRINTF("Found corrupt log %d at 0x%04X, erasing", int(file), unsigned(page)); df_EraseFrom = page; } else if (next_file != 0xFFFF && page > 0 && next_file > 1) { // chip is empty DEV_PRINTF("Found %d complete logs at 0x%04X-0x%04X", int(next_file - first_file), unsigned(page_start), unsigned(page - 1)); } } /** * get raw data from a log - page is the start page of the log, offset is the offset within the log starting at that page */ int16_t AP_Logger_Block::get_log_data_raw(uint16_t log_num, uint32_t page, uint32_t offset, uint16_t len, uint8_t *data) { WITH_SEMAPHORE(sem); const uint16_t data_page_size = df_PageSize - sizeof(struct PageHeader); const uint16_t first_page_size = data_page_size - sizeof(struct FileHeader); // offset is the true offset in the file, so we have to calculate the offset accounting for page headers if (offset >= first_page_size) { offset -= first_page_size; page = page + offset / data_page_size + 1; offset %= data_page_size; if (page > df_NumPages) { page = page % df_NumPages; } } // Sanity check we haven't been asked for an offset beyond the end of the log if (StartRead(page) != log_num) { return -1; } df_Read_BufferIdx += offset; if (!ReadBlock(data, len)) { return -1; } return (int16_t)len; } /** get data from a log, accounting for adding FMT headers */ int16_t AP_Logger_Block::get_log_data(uint16_t list_entry, uint16_t page, uint32_t offset, uint16_t len, uint8_t *data) { const uint16_t log_num = log_num_from_list_entry(list_entry); if (log_num == 0) { // that failed - probably no logs return -1; } //printf("get_log_data(%d, %d, %d, %d)\n", log_num, page, offset, len); WITH_SEMAPHORE(sem); uint16_t ret = 0; if (len > 0) { const int16_t bytes = get_log_data_raw(log_num, page, offset, len, data); if (bytes == -1) { return -1; } ret += bytes; } return ret; } // This function determines the number of whole log files in the AP_Logger // partial logs are rejected as without the headers they are relatively useless uint16_t AP_Logger_Block::get_num_logs(void) { WITH_SEMAPHORE(sem); uint32_t lastpage; uint32_t last; if (!CardInserted() || find_last_page() == 1) { return 0; } uint32_t first = StartRead(1); if (first == 0xFFFF) { return 0; } lastpage = find_last_page(); last = StartRead(lastpage); if (is_wrapped()) { // if we wrapped then the rest of the block will be filled with 0xFFFF because we always erase // a block before writing to it, in order to find the first page we therefore have to read after the // next block boundary first = StartRead((get_block(lastpage) + 1) * df_PagePerBlock + 1); // unless we happen to land on the first page of the file that is being overwritten we skip to the next file if (df_FilePage > 1) { first++; } } if (last == first) { return 1; } return (last - first + 1); } // stop logging immediately void AP_Logger_Block::stop_logging(void) { WITH_SEMAPHORE(sem); log_write_started = false; // nuke writing any previous log writebuf.clear(); } // stop logging and flush any remaining data void AP_Logger_Block::stop_logging_async(void) { stop_log_pending = true; } // This function starts a new log file in the AP_Logger // no actual data should be written to the storage here // that should all be handled by the IO thread void AP_Logger_Block::start_new_log(void) { if (erase_started) { // already erasing return; } WITH_SEMAPHORE(sem); if (logging_started()) { stop_logging(); } // no need to schedule this anymore new_log_pending = false; uint32_t last_page = find_last_page(); StartRead(last_page); log_write_started = true; uint16_t new_log_num = 1; if (find_last_log() == 0 || GetFileNumber() == 0xFFFF) { StartLogFile(new_log_num); StartWrite(1); // Check for log of length 1 page and suppress } else if (df_FilePage <= 1) { new_log_num = GetFileNumber(); // Last log too short, reuse its number // and overwrite it StartLogFile(new_log_num); StartWrite(last_page); } else { new_log_num = GetFileNumber()+1; if (last_page == 0xFFFF) { last_page=0; } StartLogFile(new_log_num); StartWrite(last_page + 1); } // save UTC time in the first 4 bytes so that we can retrieve it later uint64_t utc_usec; FileHeader hdr {}; if (AP::rtc().get_utc_usec(utc_usec)) { hdr.utc_secs = utc_usec / 1000000U; } writebuf.write((uint8_t*)&hdr, sizeof(FileHeader)); start_new_log_reset_variables(); return; } // This function finds the first and last pages of a log file // The first page may be greater than the last page if the AP_Logger has been filled and partially overwritten. void AP_Logger_Block::get_log_boundaries(uint16_t list_entry, uint32_t & start_page, uint32_t & end_page) { const uint16_t log_num = log_num_from_list_entry(list_entry); if (log_num == 0) { // that failed - probably no logs start_page = 0; end_page = 0; return; } WITH_SEMAPHORE(sem); uint16_t num = get_num_logs(); uint32_t look; end_page = find_last_page_of_log(log_num); if (num == 1 || log_num == 1) { if (!is_wrapped()) { start_page = 1; } else { StartRead(end_page); start_page = (end_page + df_NumPages - df_FilePage) % df_NumPages + 1; } } else { // looking for the first log which might have a gap in front of it if (list_entry == 1) { StartRead(end_page); if (end_page > df_FilePage) { // log is not wrapped start_page = end_page - df_FilePage + 1; } else { // log is wrapped start_page = (end_page + df_NumPages - df_FilePage) % df_NumPages + 1; } } else { look = log_num-1; do { start_page = find_last_page_of_log(look) + 1; look--; } while (start_page <= 0 && look >=1); } } if (start_page == df_NumPages + 1 || start_page == 0) { start_page = 1; } if (end_page == 0) { end_page = start_page; } } // return true if logging has wrapped around to the beginning of the chip bool AP_Logger_Block::is_wrapped(void) { return StartRead(df_NumPages) != 0xFFFF; } // This function finds the last log number uint16_t AP_Logger_Block::find_last_log(void) { WITH_SEMAPHORE(sem); uint32_t last_page = find_last_page(); return StartRead(last_page); } // This function finds the last page of the last file uint32_t AP_Logger_Block::find_last_page(void) { uint32_t look; uint32_t bottom = 1; uint32_t top = df_NumPages; uint64_t look_hash; uint64_t bottom_hash; uint64_t top_hash; WITH_SEMAPHORE(sem); StartRead(bottom); bottom_hash = ((int64_t)GetFileNumber()<<32) | df_FilePage; while (top-bottom > 1) { look = (top+bottom)/2; StartRead(look); look_hash = (int64_t)GetFileNumber()<<32 | df_FilePage; // erased sector so can discount everything above if (look_hash >= 0xFFFF00000000) { look_hash = 0; } if (look_hash < bottom_hash) { // move down top = look; } else { // move up bottom = look; bottom_hash = look_hash; } } StartRead(top); top_hash = ((int64_t)GetFileNumber()<<32) | df_FilePage; if (top_hash >= 0xFFFF00000000) { top_hash = 0; } if (top_hash > bottom_hash) { return top; } return bottom; } // This function finds the last page of a particular log file uint32_t AP_Logger_Block::find_last_page_of_log(uint16_t log_number) { uint32_t look; uint32_t bottom; uint32_t top; uint64_t look_hash; uint64_t check_hash; WITH_SEMAPHORE(sem); if (is_wrapped()) { bottom = StartRead(1); if (bottom > log_number) { bottom = find_last_page(); top = df_NumPages; } else { bottom = 1; top = find_last_page(); } } else { bottom = 1; top = find_last_page(); } check_hash = (int64_t)log_number<<32 | 0xFFFFFFFF; while (top-bottom > 1) { look = (top+bottom)/2; StartRead(look); look_hash = (int64_t)GetFileNumber()<<32 | df_FilePage; if (look_hash >= 0xFFFF00000000) { look_hash = 0; } if (look_hash > check_hash) { // move down top = look; } else { // move up bottom = look; } } if (StartRead(top) == log_number) { return top; } if (StartRead(bottom) == log_number) { return bottom; } GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "No last page of log %d at top=%X or bot=%X", int(log_number), unsigned(top), unsigned(bottom)); return 0; } void AP_Logger_Block::get_log_info(uint16_t list_entry, uint32_t &size, uint32_t &time_utc) { uint32_t start, end; WITH_SEMAPHORE(sem); get_log_boundaries(list_entry, start, end); if (end >= start) { size = (end + 1 - start) * (uint32_t)(df_PageSize - sizeof(PageHeader)); } else { size = (df_NumPages + end + 1 - start) * (uint32_t)(df_PageSize - sizeof(PageHeader)); } size -= sizeof(FileHeader); //printf("LOG %d(%d), %d-%d, size %d\n", log_num_from_list_entry(list_entry), list_entry, start, end, size); StartRead(start); // the log we are currently writing if (df_FileTime == 0 && df_FileNumber == df_Write_FileNumber) { uint64_t utc_usec; if (AP::rtc().get_utc_usec(utc_usec)) { df_FileTime = utc_usec / 1000000U; } } time_utc = df_FileTime; } // read size bytes of data from the buffer bool AP_Logger_Block::BlockRead(uint16_t IntPageAdr, void *pBuffer, uint16_t size) { memcpy(pBuffer, &buffer[IntPageAdr], size); return true; } bool AP_Logger_Block::logging_failed() const { if (!_initialised) { return true; } if (!io_thread_alive()) { return true; } if (chip_full) { return true; } return false; } // detect whether the IO thread is running, since this is considered a catastrophic failure for the logging system // better be really, really sure bool AP_Logger_Block::io_thread_alive() const { // if the io thread hasn't had a heartbeat in 3s it is dead return (AP_HAL::millis() - io_timer_heartbeat) < 3000U || !hal.scheduler->is_system_initialized(); } /* IO timer running on IO thread The IO timer runs every 1ms or at 1Khz. The standard flash chip can write roughly 130Kb/s so there is little point in trying to write more than 130 bytes - or 1 page (256 bytes). The W25Q128FV datasheet gives tpp as typically 0.7ms yielding an absolute maximum rate of 365Kb/s or just over a page per cycle. */ void AP_Logger_Block::io_timer(void) { uint32_t tnow = AP_HAL::millis(); io_timer_heartbeat = tnow; // don't write anything for the first 2s to give the dataflash chip a chance to be ready if (!_initialised || tnow < 2000) { return; } if (erase_started) { WITH_SEMAPHORE(sem); if (InErase()) { return; } // write the logging format in the last page StartWrite(df_NumPages+1); uint32_t version = DF_LOGGING_FORMAT; memset(buffer, 0, df_PageSize); memcpy(buffer, &version, sizeof(version)); FinishWrite(); erase_started = false; chip_full = false; status_msg = StatusMessage::ERASE_COMPLETE; return; } if (df_EraseFrom > 0) { WITH_SEMAPHORE(sem); const uint32_t sectors = df_NumPages / df_PagePerSector; const uint32_t block_size = df_PagePerBlock * df_PageSize; const uint32_t sectors_in_block = block_size / (df_PagePerSector * df_PageSize); uint32_t next_sector = get_sector(df_EraseFrom); const uint32_t aligned_sector = sectors - (((df_NumPages - df_EraseFrom + 1) / df_PagePerSector) / sectors_in_block) * sectors_in_block; while (next_sector < aligned_sector) { Sector4kErase(next_sector); io_timer_heartbeat = AP_HAL::millis(); next_sector++; } while (next_sector < sectors) { SectorErase(next_sector / sectors_in_block); io_timer_heartbeat = AP_HAL::millis(); next_sector += sectors_in_block; } status_msg = StatusMessage::RECOVERY_COMPLETE; df_EraseFrom = 0; } if (!CardInserted() || new_log_pending || chip_full) { return; } // we have been asked to stop logging, flush everything if (stop_log_pending) { WITH_SEMAPHORE(sem); log_write_started = false; // complete writing any previous log, a page at a time to avoid holding the lock for too long if (writebuf.available()) { write_log_page(); } else { writebuf.clear(); stop_log_pending = false; } // write at most one page } else if (writebuf.available() >= df_PageSize - sizeof(struct PageHeader)) { WITH_SEMAPHORE(sem); write_log_page(); } } // write out a page of log data void AP_Logger_Block::write_log_page() { struct PageHeader ph; ph.FileNumber = df_Write_FileNumber; ph.FilePage = df_Write_FilePage; #if BLOCK_LOG_VALIDATE ph.crc = DF_LOGGING_FORMAT + df_Write_FilePage; #endif memcpy(buffer, &ph, sizeof(ph)); const uint32_t pagesize = df_PageSize - sizeof(ph); uint32_t nbytes = writebuf.read(&buffer[sizeof(ph)], pagesize); if (nbytes < pagesize) { memset(&buffer[sizeof(ph) + nbytes], 0, pagesize - nbytes); } FinishWrite(); df_Write_FilePage++; } void AP_Logger_Block::flash_test() { const uint32_t pages_to_check = 128; for (uint32_t i=1; i<=pages_to_check; i++) { if ((i-1) % df_PagePerBlock == 0) { printf("Block erase %u\n", get_block(i)); SectorErase(get_block(i)); } memset(buffer, uint8_t(i), df_PageSize); if (i<5) { printf("Flash fill 0x%x\n", uint8_t(i)); } else if (i==5) { printf("Flash fill pages 5-%u\n", pages_to_check); } BufferToPage(i); } for (uint32_t i=1; i<=pages_to_check; i++) { if (i<5) { printf("Flash check 0x%x\n", uint8_t(i)); } else if (i==5) { printf("Flash check pages 5-%u\n", pages_to_check); } PageToBuffer(i); uint32_t bad_bytes = 0; uint32_t first_bad_byte = 0; for (uint32_t j=0; j 0) { printf("Test failed: page %u, %u of %u bad bytes, first=0x%x\n", i, bad_bytes, df_PageSize, buffer[first_bad_byte]); } } } #endif // HAL_LOGGING_BLOCK_ENABLED