from __future__ import print_function

import DataflashLog
from LogAnalyzer import Test, TestResult

# import scipy
# import pylab  ####   TEMP!!! only for dev
# from scipy import signal


class TestDualGyroDrift(Test):
    '''test for gyro drift between dual IMU data'''

    def __init__(self):
        Test.__init__(self)
        self.name = "Gyro Drift"
        self.enable = False

    def run(self, logdata, verbose):
        self.result = TestResult()
        self.result.status = TestResult.StatusType.GOOD

        # if "IMU" not in logdata.channels or "IMU2" not in logdata.channels:
        # 	self.result.status = TestResult.StatusType.NA
        # 	return

        # imuX  = logdata.channels["IMU"]["GyrX"].listData
        # imu2X = logdata.channels["IMU2"]["GyrX"].listData

        # # NOTE: weird thing about Holger's log is that the counts of IMU+IMU2 are different
        # print("length 1: %.2f, length 2: %.2f" % (len(imuX),len(imu2X)))
        # #assert(len(imuX) == len(imu2X))

        # # divide the curve into segments and get the average of each segment
        # # we will get the diff between those averages, rather than a per-sample diff as the IMU+IMU2 arrays are often not the same length
        # diffThresholdWARN = 0.03
        # diffThresholdFAIL = 0.05
        # nSamples = 10
        # imu1XAverages, imu1YAverages, imu1ZAverages, imu2XAverages, imu2YAverages, imu2ZAverages = ([],[],[],[],[],[])
        # imuXDiffAverages, imuYDiffAverages, imuZDiffAverages = ([],[],[])
        # maxDiffX, maxDiffY, maxDiffZ = (0,0,0)
        # sliceLength1 = len(logdata.channels["IMU"]["GyrX"].dictData.values())  / nSamples
        # sliceLength2 = len(logdata.channels["IMU2"]["GyrX"].dictData.values()) / nSamples
        # for i in range(0,nSamples):
        # 	imu1XAverages.append(numpy.mean(logdata.channels["IMU"]["GyrX"].dictData.values()[i*sliceLength1:i*sliceLength1+sliceLength1]))
        # 	imu1YAverages.append(numpy.mean(logdata.channels["IMU"]["GyrY"].dictData.values()[i*sliceLength1:i*sliceLength1+sliceLength1]))
        # 	imu1ZAverages.append(numpy.mean(logdata.channels["IMU"]["GyrZ"].dictData.values()[i*sliceLength1:i*sliceLength1+sliceLength1]))
        # 	imu2XAverages.append(numpy.mean(logdata.channels["IMU2"]["GyrX"].dictData.values()[i*sliceLength2:i*sliceLength2+sliceLength2]))
        # 	imu2YAverages.append(numpy.mean(logdata.channels["IMU2"]["GyrY"].dictData.values()[i*sliceLength2:i*sliceLength2+sliceLength2]))
        # 	imu2ZAverages.append(numpy.mean(logdata.channels["IMU2"]["GyrZ"].dictData.values()[i*sliceLength2:i*sliceLength2+sliceLength2]))
        # 	imuXDiffAverages.append(imu2XAverages[-1]-imu1XAverages[-1])
        # 	imuYDiffAverages.append(imu2YAverages[-1]-imu1YAverages[-1])
        # 	imuZDiffAverages.append(imu2ZAverages[-1]-imu1ZAverages[-1])
        # 	if abs(imuXDiffAverages[-1]) > maxDiffX:
        # 		maxDiffX = imuXDiffAverages[-1]
        # 	if abs(imuYDiffAverages[-1]) > maxDiffY:
        # 		maxDiffY = imuYDiffAverages[-1]
        # 	if abs(imuZDiffAverages[-1]) > maxDiffZ:
        # 		maxDiffZ = imuZDiffAverages[-1]

        # if max(maxDiffX,maxDiffY,maxDiffZ) > diffThresholdFAIL:
        # 	self.result.status = TestResult.StatusType.FAIL
        # 	self.result.statusMessage = "IMU/IMU2 gyro averages differ by more than %s radians" % diffThresholdFAIL
        # elif max(maxDiffX,maxDiffY,maxDiffZ) > diffThresholdWARN:
        # 	self.result.status = TestResult.StatusType.WARN
        # 	self.result.statusMessage = "IMU/IMU2 gyro averages differ by more than %s radians" % diffThresholdWARN

        # # pylab.plot(zip(*imuX)[0], zip(*imuX)[1], 'g')
        # # pylab.plot(zip(*imu2X)[0], zip(*imu2X)[1], 'r')

        # #pylab.plot(range(0,(nSamples*sliceLength1),sliceLength1), imu1ZAverages, 'b')

        # print("Gyro averages1X: " + repr(imu1XAverages))
        # print("Gyro averages1Y: " + repr(imu1YAverages))
        # print("Gyro averages1Z: " + repr(imu1ZAverages) + "\n")
        # print("Gyro averages2X: " + repr(imu2XAverages))
        # print("Gyro averages2Y: " + repr(imu2YAverages))
        # print("Gyro averages2Z: " + repr(imu2ZAverages) + "\n")
        # print("Gyro averages diff X: " + repr(imuXDiffAverages))
        # print("Gyro averages diff Y: " + repr(imuYDiffAverages))
        # print("Gyro averages diff Z: " + repr(imuZDiffAverages))

        # # lowpass filter using numpy
        # # cutoff = 100
        # # fs = 10000.0
        # # b,a = scipy.signal.filter_design.butter(5,cutoff/(fs/2))
        # # imuXFiltered  = scipy.signal.filtfilt(b,a,zip(*imuX)[1])
        # # imu2XFiltered = scipy.signal.filtfilt(b,a,zip(*imu2X)[1])
        # #pylab.plot(imuXFiltered, 'r')

        # # TMP: DISPLAY BEFORE+AFTER plots
        # pylab.show()

        # # print("imuX  average before lowpass filter: %.8f" % logdata.channels["IMU"]["GyrX"].avg())
        # # print("imuX  average after  lowpass filter: %.8f" % numpy.mean(imuXFiltered))
        # # print("imu2X average before lowpass filter: %.8f" % logdata.channels["IMU2"]["GyrX"].avg())
        # # print("imu2X average after  lowpass filter: %.8f" % numpy.mean(imu2XFiltered))

        # avg1X = logdata.channels["IMU"]["GyrX"].avg()
        # avg1Y = logdata.channels["IMU"]["GyrY"].avg()
        # avg1Z = logdata.channels["IMU"]["GyrZ"].avg()
        # avg2X = logdata.channels["IMU2"]["GyrX"].avg()
        # avg2Y = logdata.channels["IMU2"]["GyrY"].avg()
        # avg2Z = logdata.channels["IMU2"]["GyrZ"].avg()

        # avgRatioX = (max(avg1X,avg2X) - min(avg1X,avg2X)) /     #abs(max(avg1X,avg2X) / min(avg1X,avg2X))
        # avgRatioY = abs(max(avg1Y,avg2Y) / min(avg1Y,avg2Y))
        # avgRatioZ = abs(max(avg1Z,avg2Z) / min(avg1Z,avg2Z))

        # self.result.statusMessage = "IMU  gyro avg: %.4f,%.4f,%.4f\nIMU2 gyro avg: %.4f,%.4f,%.4f\nAvg ratio: %.4f,%.4f,%.4f" % (avg1X,avg1Y,avg1Z, avg2X,avg2Y,avg2Z, avgRatioX,avgRatioY,avgRatioZ)