// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /***************************************************************************** The init_ardupilot function processes everything we need for an in - air restart We will determine later if we are actually on the ground and process a ground start in that case. *****************************************************************************/ #include "Rover.h" #include "version.h" #if CLI_ENABLED == ENABLED // This is the help function int8_t Rover::main_menu_help(uint8_t argc, const Menu::arg *argv) { cliSerial->printf("Commands:\n" " logs log readback/setup mode\n" " setup setup mode\n" " test test mode\n" "\n" "Move the slide switch and reset to FLY.\n" "\n"); return(0); } // Command/function table for the top-level menu. static const struct Menu::command main_menu_commands[] = { // command function called // ======= =============== {"logs", MENU_FUNC(process_logs)}, {"setup", MENU_FUNC(setup_mode)}, {"test", MENU_FUNC(test_mode)}, {"reboot", MENU_FUNC(reboot_board)}, {"help", MENU_FUNC(main_menu_help)} }; // Create the top-level menu object. MENU(main_menu, THISFIRMWARE, main_menu_commands); int8_t Rover::reboot_board(uint8_t argc, const Menu::arg *argv) { hal.scheduler->reboot(false); return 0; } // the user wants the CLI. It never exits void Rover::run_cli(AP_HAL::UARTDriver *port) { // disable the failsafe code in the CLI hal.scheduler->register_timer_failsafe(NULL,1); // disable the mavlink delay callback hal.scheduler->register_delay_callback(NULL, 5); cliSerial = port; Menu::set_port(port); port->set_blocking_writes(true); while (1) { main_menu.run(); } } #endif // CLI_ENABLED static void mavlink_delay_cb_static() { rover.mavlink_delay_cb(); } static void failsafe_check_static() { rover.failsafe_check(); } void Rover::init_ardupilot() { // initialise console serial port serial_manager.init_console(); cliSerial->printf("\n\nInit " FIRMWARE_STRING "\n\nFree RAM: %u\n", hal.util->available_memory()); // // Check the EEPROM format version before loading any parameters from EEPROM. // load_parameters(); GCS_MAVLINK::set_dataflash(&DataFlash); // initialise serial ports serial_manager.init(); // setup first port early to allow BoardConfig to report errors gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0); // Register mavlink_delay_cb, which will run anytime you have // more than 5ms remaining in your call to hal.scheduler->delay hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); BoardConfig.init(); ServoRelayEvents.set_channel_mask(0xFFF0); set_control_channels(); battery.init(); // keep a record of how many resets have happened. This can be // used to detect in-flight resets g.num_resets.set_and_save(g.num_resets+1); // init baro before we start the GCS, so that the CLI baro test works barometer.init(); // we start by assuming USB connected, as we initialed the serial // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. usb_connected = true; check_usb_mux(); // setup telem slots with serial ports for (uint8_t i = 1; i < MAVLINK_COMM_NUM_BUFFERS; i++) { gcs[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, i); } // setup frsky telemetry #if FRSKY_TELEM_ENABLED == ENABLED frsky_telemetry.init(serial_manager); #endif mavlink_system.sysid = g.sysid_this_mav; #if LOGGING_ENABLED == ENABLED log_init(); #endif if (g.compass_enabled==true) { if (!compass.init()|| !compass.read()) { cliSerial->println("Compass initialisation failed!"); g.compass_enabled = false; } else { ahrs.set_compass(&compass); //compass.get_offsets(); // load offsets to account for airframe magnetic interference } } // initialise sonar init_sonar(); // and baro for EKF init_barometer(true); // Do GPS init gps.init(&DataFlash, serial_manager); rc_override_active = hal.rcin->set_overrides(rc_override, 8); init_rc_in(); // sets up rc channels from radio init_rc_out(); // sets up the timer libs relay.init(); #if MOUNT == ENABLED // initialise camera mount camera_mount.init(&DataFlash, serial_manager); #endif /* setup the 'main loop is dead' check. Note that this relies on the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); #if CLI_ENABLED == ENABLED // If the switch is in 'menu' mode, run the main menu. // // Since we can't be sure that the setup or test mode won't leave // the system in an odd state, we don't let the user exit the top // menu; they must reset in order to fly. // if (g.cli_enabled == 1) { const char *msg = "\nPress ENTER 3 times to start interactive setup\n"; cliSerial->println(msg); if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) { gcs[1].get_uart()->println(msg); } if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) { gcs[2].get_uart()->println(msg); } } #endif init_capabilities(); startup_ground(); set_mode((enum mode)g.initial_mode.get()); // set the correct flight mode // --------------------------- reset_control_switch(); } //******************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //******************************************************************************** void Rover::startup_ground(void) { set_mode(INITIALISING); gcs_send_text(MAV_SEVERITY_INFO," Ground start"); #if(GROUND_START_DELAY > 0) gcs_send_text(MAV_SEVERITY_NOTICE," With delay"); delay(GROUND_START_DELAY * 1000); #endif //IMU ground start //------------------------ // startup_INS_ground(); // read the radio to set trims // --------------------------- trim_radio(); // initialise mission library mission.init(); // we don't want writes to the serial port to cause us to pause // so set serial ports non-blocking once we are ready to drive serial_manager.set_blocking_writes_all(false); ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW)); ins.set_dataflash(&DataFlash); gcs_send_text(MAV_SEVERITY_INFO,"Ready to drive"); } /* set the in_reverse flag reset the throttle integrator if this changes in_reverse */ void Rover::set_reverse(bool reverse) { if (in_reverse == reverse) { return; } g.pidSpeedThrottle.reset_I(); steerController.reset_I(); nav_controller->set_reverse(reverse); steerController.set_reverse(reverse); in_reverse = reverse; } void Rover::set_mode(enum mode mode) { if (control_mode == mode){ // don't switch modes if we are already in the correct mode. return; } // If we are changing out of AUTO mode reset the loiter timer if (control_mode == AUTO) { loiter_time = 0; } control_mode = mode; throttle_last = 0; throttle = 500; g.pidSpeedThrottle.reset_I(); #if FRSKY_TELEM_ENABLED == ENABLED frsky_telemetry.update_control_mode(control_mode); #endif if (control_mode != AUTO) { auto_triggered = false; } switch(control_mode) { case MANUAL: case HOLD: case LEARNING: case STEERING: auto_throttle_mode = false; break; case AUTO: auto_throttle_mode = true; rtl_complete = false; restart_nav(); break; case RTL: auto_throttle_mode = true; do_RTL(); break; case GUIDED: auto_throttle_mode = true; rtl_complete = false; /* when entering guided mode we set the target as the current location. This matches the behaviour of the copter code. */ guided_WP = current_loc; set_guided_WP(); break; default: auto_throttle_mode = true; do_RTL(); break; } if (should_log(MASK_LOG_MODE)) { DataFlash.Log_Write_Mode(control_mode); } } /* set_mode() wrapper for MAVLink SET_MODE */ bool Rover::mavlink_set_mode(uint8_t mode) { switch (mode) { case MANUAL: case HOLD: case LEARNING: case STEERING: case GUIDED: case AUTO: case RTL: set_mode((enum mode)mode); return true; } return false; } /* called to set/unset a failsafe event. */ void Rover::failsafe_trigger(uint8_t failsafe_type, bool on) { uint8_t old_bits = failsafe.bits; if (on) { failsafe.bits |= failsafe_type; } else { failsafe.bits &= ~failsafe_type; } if (old_bits == 0 && failsafe.bits != 0) { // a failsafe event has started failsafe.start_time = millis(); } if (failsafe.triggered != 0 && failsafe.bits == 0) { // a failsafe event has ended gcs_send_text_fmt(MAV_SEVERITY_INFO, "Failsafe ended"); } failsafe.triggered &= failsafe.bits; if (failsafe.triggered == 0 && failsafe.bits != 0 && millis() - failsafe.start_time > g.fs_timeout*1000 && control_mode != RTL && control_mode != HOLD) { failsafe.triggered = failsafe.bits; gcs_send_text_fmt(MAV_SEVERITY_WARNING, "Failsafe trigger 0x%x", (unsigned)failsafe.triggered); switch (g.fs_action) { case 0: break; case 1: set_mode(RTL); break; case 2: set_mode(HOLD); break; } } } void Rover::startup_INS_ground(void) { gcs_send_text(MAV_SEVERITY_INFO, "Warming up ADC"); mavlink_delay(500); // Makes the servos wiggle twice - about to begin INS calibration - HOLD LEVEL AND STILL!! // ----------------------- gcs_send_text(MAV_SEVERITY_INFO, "Beginning INS calibration. Do not move vehicle"); mavlink_delay(1000); ahrs.init(); ahrs.set_fly_forward(true); ahrs.set_vehicle_class(AHRS_VEHICLE_GROUND); ins.init(scheduler.get_loop_rate_hz()); ahrs.reset(); } // updates the notify state // should be called at 50hz void Rover::update_notify() { notify.update(); } void Rover::resetPerfData(void) { mainLoop_count = 0; G_Dt_max = 0; perf_mon_timer = millis(); } void Rover::check_usb_mux(void) { bool usb_check = hal.gpio->usb_connected(); if (usb_check == usb_connected) { return; } // the user has switched to/from the telemetry port usb_connected = usb_check; } void Rover::print_mode(AP_HAL::BetterStream *port, uint8_t mode) { switch (mode) { case MANUAL: port->print("Manual"); break; case HOLD: port->print("HOLD"); break; case LEARNING: port->print("Learning"); break; case STEERING: port->print("Steering"); break; case AUTO: port->print("AUTO"); break; case RTL: port->print("RTL"); break; default: port->printf("Mode(%u)", (unsigned)mode); break; } } /* check a digitial pin for high,low (1/0) */ uint8_t Rover::check_digital_pin(uint8_t pin) { int8_t dpin = hal.gpio->analogPinToDigitalPin(pin); if (dpin == -1) { return 0; } // ensure we are in input mode hal.gpio->pinMode(dpin, HAL_GPIO_INPUT); // enable pullup hal.gpio->write(dpin, 1); return hal.gpio->read(dpin); } /* should we log a message type now? */ bool Rover::should_log(uint32_t mask) { if (!(mask & g.log_bitmask) || in_mavlink_delay) { return false; } bool ret = hal.util->get_soft_armed() || DataFlash.log_while_disarmed(); if (ret && !DataFlash.logging_started() && !in_log_download) { start_logging(); } return ret; } /* update AHRS soft arm state and log as needed */ void Rover::change_arm_state(void) { Log_Arm_Disarm(); hal.util->set_soft_armed(arming.is_armed() && hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED); } /* arm motors */ bool Rover::arm_motors(AP_Arming::ArmingMethod method) { if (!arming.arm(method)) { return false; } // only log if arming was successful channel_throttle->enable_out(); change_arm_state(); return true; } /* disarm motors */ bool Rover::disarm_motors(void) { if (!arming.disarm()) { return false; } if (arming.arming_required() == AP_Arming::YES_ZERO_PWM) { channel_throttle->disable_out(); if (g.skid_steer_out) { channel_steer->disable_out(); } } if (control_mode != AUTO) { // reset the mission on disarm if we are not in auto mission.reset(); } //only log if disarming was successful change_arm_state(); return true; }