/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * Author: Oliver Walters / Currawong Engineering Pty Ltd */ #include #include #include "AP_PiccoloCAN.h" #if HAL_PICCOLO_CAN_ENABLE #include #include #include #include #include #include #include #include #include #include #include #include // Protocol files for the Velocity ESC #include #include // Protocol files for the CBS servo #include #include extern const AP_HAL::HAL& hal; #if HAL_CANMANAGER_ENABLED #define debug_can(level_debug, fmt, args...) do { AP::can().log_text(level_debug, "PiccoloCAN", fmt, ##args); } while (0) #else #define debug_can(level_debug, fmt, args...) #endif // table of user-configurable Piccolo CAN bus parameters const AP_Param::GroupInfo AP_PiccoloCAN::var_info[] = { // @Param: ESC_BM // @DisplayName: ESC channels // @Description: Bitmask defining which ESC (motor) channels are to be transmitted over Piccolo CAN // @Bitmask: 0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16, 16: ESC 17, 17: ESC 18, 18: ESC 19, 19: ESC 20, 20: ESC 21, 21: ESC 22, 22: ESC 23, 23: ESC 24, 24: ESC 25, 25: ESC 26, 26: ESC 27, 27: ESC 28, 28: ESC 29, 29: ESC 30, 30: ESC 31, 31: ESC 32 // @User: Advanced AP_GROUPINFO("ESC_BM", 1, AP_PiccoloCAN, _esc_bm, 0xFFFF), // @Param: ESC_RT // @DisplayName: ESC output rate // @Description: Output rate of ESC command messages // @Units: Hz // @User: Advanced // @Range: 1 500 AP_GROUPINFO("ESC_RT", 2, AP_PiccoloCAN, _esc_hz, PICCOLO_MSG_RATE_HZ_DEFAULT), // @Param: SRV_BM // @DisplayName: Servo channels // @Description: Bitmask defining which servo channels are to be transmitted over Piccolo CAN // @Bitmask: 0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15, 15: Servo 16 // @User: Advanced AP_GROUPINFO("SRV_BM", 3, AP_PiccoloCAN, _srv_bm, 0xFFFF), // @Param: SRV_RT // @DisplayName: Servo command output rate // @Description: Output rate of servo command messages // @Units: Hz // @User: Advanced // @Range: 1 500 AP_GROUPINFO("SRV_RT", 4, AP_PiccoloCAN, _srv_hz, PICCOLO_MSG_RATE_HZ_DEFAULT), #if AP_EFI_CURRAWONG_ECU_ENABLED // @Param: ECU_ID // @DisplayName: ECU Node ID // @Description: Node ID to send ECU throttle messages to. Set to zero to disable ECU throttle messages. Set to 255 to broadcast to all ECUs. // @Range: 0 255 // @User: Advanced AP_GROUPINFO("ECU_ID", 5, AP_PiccoloCAN, _ecu_id, PICCOLO_CAN_ECU_ID_DEFAULT), // @Param: ECU_RT // @DisplayName: ECU command output rate // @Description: Output rate of ECU command messages // @Units: Hz // @User: Advanced // @Range: 1 500 AP_GROUPINFO("ECU_RT", 6, AP_PiccoloCAN, _ecu_hz, PICCOLO_MSG_RATE_HZ_DEFAULT), #endif AP_GROUPEND }; AP_PiccoloCAN::AP_PiccoloCAN() { AP_Param::setup_object_defaults(this, var_info); debug_can(AP_CANManager::LOG_INFO, "PiccoloCAN: constructed\n\r"); } AP_PiccoloCAN *AP_PiccoloCAN::get_pcan(uint8_t driver_index) { if (driver_index >= AP::can().get_num_drivers() || AP::can().get_driver_type(driver_index) != AP_CAN::Protocol::PiccoloCAN) { return nullptr; } return static_cast(AP::can().get_driver(driver_index)); } bool AP_PiccoloCAN::add_interface(AP_HAL::CANIface* can_iface) { if (_can_iface != nullptr) { debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: Multiple Interface not supported\n\r"); return false; } _can_iface = can_iface; if (_can_iface == nullptr) { debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: CAN driver not found\n\r"); return false; } if (!_can_iface->is_initialized()) { debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: Driver not initialized\n\r"); return false; } if (!_can_iface->set_event_handle(&sem_handle)) { debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: Cannot add event handle\n\r"); return false; } return true; } // initialize PiccoloCAN bus void AP_PiccoloCAN::init(uint8_t driver_index, bool enable_filters) { _driver_index = driver_index; debug_can(AP_CANManager::LOG_DEBUG, "PiccoloCAN: starting init\n\r"); if (_initialized) { debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: already initialized\n\r"); return; } // start calls to loop in separate thread if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_PiccoloCAN::loop, void), _thread_name, 4096, AP_HAL::Scheduler::PRIORITY_MAIN, 1)) { debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: couldn't create thread\n\r"); return; } _initialized = true; snprintf(_thread_name, sizeof(_thread_name), "PiccoloCAN_%u", driver_index); debug_can(AP_CANManager::LOG_DEBUG, "PiccoloCAN: init done\n\r"); } // loop to send output to CAN devices in background thread void AP_PiccoloCAN::loop() { AP_HAL::CANFrame txFrame {}; AP_HAL::CANFrame rxFrame {}; uint16_t esc_tx_counter = 0; uint16_t servo_tx_counter = 0; #if AP_EFI_CURRAWONG_ECU_ENABLED uint16_t ecu_tx_counter = 0; #endif // CAN Frame ID components uint8_t frame_id_group; // Piccolo message group uint16_t frame_id_device; // Device identifier while (true) { if (!_initialized) { debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: not initialized\n\r"); hal.scheduler->delay_microseconds(10000); continue; } // Calculate the output rate for ESC commands _esc_hz.set(constrain_int16(_esc_hz, PICCOLO_MSG_RATE_HZ_MIN, PICCOLO_MSG_RATE_HZ_MAX)); uint16_t escCmdRateMs = 1000 / _esc_hz; // Calculate the output rate for servo commands _srv_hz.set(constrain_int16(_srv_hz, PICCOLO_MSG_RATE_HZ_MIN, PICCOLO_MSG_RATE_HZ_MAX)); uint16_t servoCmdRateMs = 1000 / _srv_hz; #if AP_EFI_CURRAWONG_ECU_ENABLED _ecu_hz.set(constrain_int16(_ecu_hz, PICCOLO_MSG_RATE_HZ_MIN, PICCOLO_MSG_RATE_HZ_MAX)); uint16_t ecuCmdRateMs = 1000 / _ecu_hz; #endif uint64_t timeout = AP_HAL::micros64() + 250ULL; // 1ms loop delay hal.scheduler->delay_microseconds(1000); // Transmit ESC commands at regular intervals if (esc_tx_counter++ > escCmdRateMs) { esc_tx_counter = 0; send_esc_messages(); } // Transmit servo commands at regular intervals if (servo_tx_counter++ > servoCmdRateMs) { servo_tx_counter = 0; send_servo_messages(); } #if AP_EFI_CURRAWONG_ECU_ENABLED // Transmit ecu throttle commands at regular intervals if (ecu_tx_counter++ > ecuCmdRateMs) { ecu_tx_counter = 0; send_ecu_messages(); } #endif // Look for any message responses on the CAN bus while (read_frame(rxFrame, timeout)) { // Extract group and device ID values from the frame identifier frame_id_group = (rxFrame.id >> 24) & 0x1F; frame_id_device = (rxFrame.id >> 8) & 0xFF; // Only accept extended messages if ((rxFrame.id & AP_HAL::CANFrame::FlagEFF) == 0) { continue; } switch (PiccoloCAN_MessageGroup(frame_id_group)) { // ESC messages exist in the ACTUATOR group case PiccoloCAN_MessageGroup::ACTUATOR: switch (PiccoloCAN_ActuatorType(frame_id_device)) { case PiccoloCAN_ActuatorType::SERVO: handle_servo_message(rxFrame); break; case PiccoloCAN_ActuatorType::ESC: handle_esc_message(rxFrame); break; default: // Unknown actuator type break; } break; case PiccoloCAN_MessageGroup::ECU_OUT: #if AP_EFI_CURRAWONG_ECU_ENABLED handle_ecu_message(rxFrame); #endif break; default: break; } } } } // write frame on CAN bus, returns true on success bool AP_PiccoloCAN::write_frame(AP_HAL::CANFrame &out_frame, uint64_t timeout) { if (!_initialized) { debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: Driver not initialized for write_frame\n\r"); return false; } bool read_select = false; bool write_select = true; bool ret = _can_iface->select(read_select, write_select, &out_frame, timeout); if (!ret || !write_select) { return false; } return (_can_iface->send(out_frame, timeout, AP_HAL::CANIface::AbortOnError) == 1); } // read frame on CAN bus, returns true on succses bool AP_PiccoloCAN::read_frame(AP_HAL::CANFrame &recv_frame, uint64_t timeout) { if (!_initialized) { debug_can(AP_CANManager::LOG_ERROR, "PiccoloCAN: Driver not initialized for read_frame\n\r"); return false; } bool read_select = true; bool write_select = false; bool ret = _can_iface->select(read_select, write_select, nullptr, timeout); if (!ret || !read_select) { // No frame available return false; } uint64_t time; AP_HAL::CANIface::CanIOFlags flags {}; return (_can_iface->receive(recv_frame, time, flags) == 1); } // called from SRV_Channels void AP_PiccoloCAN::update() { uint64_t timestamp = AP_HAL::micros64(); /* Read out the servo commands from the channel mixer */ for (uint8_t ii = 0; ii < PICCOLO_CAN_MAX_NUM_SERVO; ii++) { if (is_servo_channel_active(ii)) { uint16_t output = 0; SRV_Channel::Aux_servo_function_t function = SRV_Channels::channel_function(ii); if (SRV_Channels::get_output_pwm(function, output)) { _servos[ii].command = output; _servos[ii].newCommand = true; } } } /* Read out the ESC commands from the channel mixer */ for (uint8_t ii = 0; ii < PICCOLO_CAN_MAX_NUM_ESC; ii++) { if (is_esc_channel_active(ii)) { uint16_t output = 0; SRV_Channel::Aux_servo_function_t motor_function = SRV_Channels::get_motor_function(ii); if (SRV_Channels::get_output_pwm(motor_function, output)) { _escs[ii].command = output; _escs[ii].newCommand = true; } } } #if AP_EFI_CURRAWONG_ECU_ENABLED if (_ecu_id != 0) { _ecu_info.command = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle); _ecu_info.newCommand = true; } #endif // AP_EFI_CURRAWONG_ECU_ENABLED AP_Logger *logger = AP_Logger::get_singleton(); // Push received telemetry data into the logging system if (logger && logger->logging_enabled()) { WITH_SEMAPHORE(_telem_sem); for (uint8_t ii = 0; ii < PICCOLO_CAN_MAX_NUM_SERVO; ii++) { AP_PiccoloCAN_Servo &servo = _servos[ii]; if (servo.newTelemetry) { union { Servo_ErrorBits_t ebits; uint8_t errors; } err; err.ebits = servo.status.statusA.errors; logger->Write_ServoStatus( timestamp, ii, servo.position(), // Servo position (represented in microsecond units) servo.current() * 0.01f, // Servo force (actually servo current, 0.01A per bit) servo.speed(), // Servo speed (degrees per second) servo.dutyCycle(), // Servo duty cycle (absolute value as it can be +/- 100%) uint16_t(servo.commandedPosition()), // Commanded position servo.voltage(), // Servo voltage servo.current(), // Servo current servo.temperature(), // Servo temperature servo.temperature(), // err.errors ); servo.newTelemetry = false; } } } } #if HAL_GCS_ENABLED // send ESC telemetry messages over MAVLink void AP_PiccoloCAN::send_esc_telemetry_mavlink(uint8_t mav_chan) { // Arrays to store ESC telemetry data uint8_t temperature[4] {}; uint16_t voltage[4] {}; uint16_t rpm[4] {}; uint16_t count[4] {}; uint16_t current[4] {}; uint16_t totalcurrent[4] {}; bool dataAvailable = false; uint8_t idx = 0; WITH_SEMAPHORE(_telem_sem); for (uint8_t ii = 0; ii < PICCOLO_CAN_MAX_NUM_ESC; ii++) { // Calculate index within storage array idx = (ii % 4); AP_PiccoloCAN_ESC &esc = _escs[idx]; // Has the ESC been heard from recently? if (is_esc_present(ii)) { dataAvailable = true; // Provide the maximum ESC temperature in the telemetry stream temperature[idx] = esc.temperature(); // Convert to C voltage[idx] = esc.voltage() * 10; // Convert to cV current[idx] = esc.current() * 10; // Convert to cA totalcurrent[idx] = 0; rpm[idx] = esc.rpm(); count[idx] = 0; } else { temperature[idx] = 0; voltage[idx] = 0; current[idx] = 0; totalcurrent[idx] = 0; rpm[idx] = 0; count[idx] = 0; } // Send ESC telemetry in groups of 4 if ((ii % 4) == 3) { if (dataAvailable) { if (!HAVE_PAYLOAD_SPACE((mavlink_channel_t) mav_chan, ESC_TELEMETRY_1_TO_4)) { continue; } switch (ii) { case 3: mavlink_msg_esc_telemetry_1_to_4_send((mavlink_channel_t) mav_chan, temperature, voltage, current, totalcurrent, rpm, count); break; case 7: mavlink_msg_esc_telemetry_5_to_8_send((mavlink_channel_t) mav_chan, temperature, voltage, current, totalcurrent, rpm, count); break; case 11: mavlink_msg_esc_telemetry_9_to_12_send((mavlink_channel_t) mav_chan, temperature, voltage, current, totalcurrent, rpm, count); break; case 15: mavlink_msg_esc_telemetry_13_to_16_send((mavlink_channel_t) mav_chan, temperature, voltage, current, totalcurrent, rpm, count); break; default: break; } } dataAvailable = false; } } } #endif // send servo messages over CAN void AP_PiccoloCAN::send_servo_messages(void) { AP_HAL::CANFrame txFrame {}; uint64_t timeout = AP_HAL::micros64() + 1000ULL; // No servos are selected? Don't send anything! if (_srv_bm == 0x00) { return; } bool send_cmd = false; int16_t cmd[4] {}; uint8_t idx; // Transmit bulk command packets to 4x servos simultaneously for (uint8_t ii = 0; ii < PICCOLO_CAN_MAX_GROUP_SERVO; ii++) { send_cmd = false; for (uint8_t jj = 0; jj < 4; jj++) { idx = (ii * 4) + jj; // Set default command value if an output field is unused cmd[jj] = 0x7FFF; // Skip servo if the output is not enabled if (!is_servo_channel_active(idx)) { continue; } /* Check if the servo is enabled. * If it is not enabled, send an enable message. */ if (!is_servo_present(idx) || !is_servo_enabled(idx)) { // Servo is not enabled encodeServo_EnablePacket(&txFrame); txFrame.id |= (idx + 1); write_frame(txFrame, timeout); } else if (_servos[idx].newCommand) { // A new command is provided send_cmd = true; cmd[jj] = _servos[idx].command; _servos[idx].newCommand = false; } } if (send_cmd) { encodeServo_MultiPositionCommandPacket( &txFrame, cmd[0], cmd[1], cmd[2], cmd[3], (PKT_SERVO_MULTI_COMMAND_1 + ii) ); // Broadcast the command to all servos txFrame.id |= 0xFF; write_frame(txFrame, timeout); } } } // send ESC messages over CAN void AP_PiccoloCAN::send_esc_messages(void) { AP_HAL::CANFrame txFrame {}; uint64_t timeout = AP_HAL::micros64() + 1000ULL; // No ESCs are selected? Don't send anything if (_esc_bm == 0x00) { return; } // System is armed - send out ESC commands if (hal.util->get_soft_armed()) { bool send_cmd = false; int16_t cmd[4] {}; uint8_t idx; // Transmit bulk command packets to 4x ESC simultaneously for (uint8_t ii = 0; ii < PICCOLO_CAN_MAX_GROUP_ESC; ii++) { send_cmd = false; for (uint8_t jj = 0; jj < 4; jj++) { idx = (ii * 4) + jj; // Set default command value if an output field is unused cmd[jj] = 0x7FFF; // Skip an ESC if the motor channel is not enabled if (!is_esc_channel_active(idx)) { continue; } /* Check if the ESC is software-inhibited. * If so, send a message to enable it. */ if (is_esc_present(idx) && !is_esc_enabled(idx)) { encodeESC_EnablePacket(&txFrame); txFrame.id |= (idx + 1); write_frame(txFrame, timeout); } else if (_escs[idx].newCommand) { send_cmd = true; cmd[jj] = _escs[idx].command; _escs[idx].newCommand = false; } else { // A command of 0x7FFF is 'out of range' and will be ignored by the corresponding ESC cmd[jj] = 0x7FFF; } } if (send_cmd) { encodeESC_CommandMultipleESCsPacket( &txFrame, cmd[0], cmd[1], cmd[2], cmd[3], (PKT_ESC_SETPOINT_1 + ii) ); // Broadcast the command to all ESCs txFrame.id |= 0xFF; write_frame(txFrame, timeout); } } } else { // System is NOT armed - send a "disable" message to all ESCs on the bus // Command all ESC into software disable mode encodeESC_DisablePacket(&txFrame); // Set the ESC address to the broadcast ID (0xFF) txFrame.id |= 0xFF; write_frame(txFrame, timeout); } } // interpret a servo message received over CAN bool AP_PiccoloCAN::handle_servo_message(AP_HAL::CANFrame &frame) { // The servo address is the lower byte of the frame ID uint8_t addr = frame.id & 0xFF; // Ignore servo with an invalid node ID if (addr == 0x00) { return false; } // Subtract to get the address in memory addr -= 1; // Maximum number of servos allowed if (addr >= PICCOLO_CAN_MAX_NUM_SERVO) { return false; } // Pass the CAN frame off to the specific servo return _servos[addr].handle_can_frame(frame); } // interpret an ESC message received over CAN bool AP_PiccoloCAN::handle_esc_message(AP_HAL::CANFrame &frame) { // The ESC address is the lower byte of the frame ID uint8_t addr = frame.id & 0xFF; // Ignore any ESC with node ID of zero if (addr == 0x00) { return false; } // Subtract to get the address in memory addr -= 1; // Maximum number of ESCs allowed if (addr >= PICCOLO_CAN_MAX_NUM_ESC) { return false; } return _escs[addr].handle_can_frame(frame); } #if AP_EFI_CURRAWONG_ECU_ENABLED void AP_PiccoloCAN::send_ecu_messages(void) { AP_HAL::CANFrame txFrame {}; const uint64_t timeout = AP_HAL::micros64() + 1000ULL; // No ECU node id set, don't send anything if (_ecu_id == 0) { return; } if (_ecu_info.newCommand) { encodeECU_ThrottleCommandPacket(&txFrame, _ecu_info.command); txFrame.id |= (uint8_t) _ecu_id; _ecu_info.newCommand = false; write_frame(txFrame, timeout); } } bool AP_PiccoloCAN::handle_ecu_message(AP_HAL::CANFrame &frame) { // Get the ecu instance AP_EFI_Currawong_ECU* ecu = AP_EFI_Currawong_ECU::get_instance(); if (ecu != nullptr) { return ecu->handle_message(frame); } return false; } #endif // AP_EFI_CURRAWONG_ECU_ENABLED /** * Check if a given servo channel is "active" (has been configured for Piccolo control output) */ bool AP_PiccoloCAN::is_servo_channel_active(uint8_t chan) { // First check if the particular servo channel is enabled in the channel mask if (((_srv_bm >> chan) & 0x01) == 0x00) { return false; } SRV_Channel::Aux_servo_function_t function = SRV_Channels::channel_function(chan); // Ignore if the servo channel does not have a function assigned if (function <= SRV_Channel::k_none) { return false; } // Ignore if the assigned function is a motor function if (SRV_Channel::is_motor(function)) { return false; } // We can safely say that the particular servo channel is active return true; } /** * Check if a given ESC channel is "active" (has been configured for Piccolo control output) */ bool AP_PiccoloCAN::is_esc_channel_active(uint8_t chan) { // First check if the particular ESC channel is enabled in the channel mask if (((_esc_bm >> chan) & 0x01) == 0x00) { return false; } // Check if a motor function is assigned for this motor channel SRV_Channel::Aux_servo_function_t motor_function = SRV_Channels::get_motor_function(chan); if (SRV_Channels::function_assigned(motor_function)) { return true; } return false; } /** * Determine if a servo is present on the CAN bus (has telemetry data been received) */ bool AP_PiccoloCAN::is_servo_present(uint8_t chan, uint64_t timeout_ms) { if (chan >= PICCOLO_CAN_MAX_NUM_SERVO) { return false; } return _servos[chan].is_connected(timeout_ms); } /** * Determine if an ESC is present on the CAN bus (has telemetry data been received) */ bool AP_PiccoloCAN::is_esc_present(uint8_t chan, uint64_t timeout_ms) { if (chan >= PICCOLO_CAN_MAX_NUM_ESC) { return false; } return _escs[chan].is_connected(timeout_ms); } /** * Check if a given servo is enabled */ bool AP_PiccoloCAN::is_servo_enabled(uint8_t chan) { if (chan >= PICCOLO_CAN_MAX_NUM_SERVO) { return false; } // If the servo is not present, we cannot determine if it is enabled or not if (!is_servo_present(chan)) { return false; } return _servos[chan].is_enabled(); } /** * Check if a given ESC is enabled (both hardware and software enable flags) */ bool AP_PiccoloCAN::is_esc_enabled(uint8_t chan) { if (chan >= PICCOLO_CAN_MAX_NUM_ESC) { return false; } // If the ESC is not present, we cannot determine if it is enabled or not if (!is_esc_present(chan)) { return false; } return _escs[chan].is_enabled(); } bool AP_PiccoloCAN::pre_arm_check(char* reason, uint8_t reason_len) { // Check that each required servo is present on the bus for (uint8_t ii = 0; ii < PICCOLO_CAN_MAX_NUM_SERVO; ii++) { if (is_servo_channel_active(ii)) { if (!is_servo_present(ii)) { snprintf(reason, reason_len, "Servo %u not detected", ii + 1); return false; } } } // Check that each required ESC is present on the bus for (uint8_t ii = 0; ii < PICCOLO_CAN_MAX_NUM_ESC; ii++) { // Skip any ESC channels where the motor channel is not enabled if (is_esc_channel_active(ii)) { if (!is_esc_present(ii)) { snprintf(reason, reason_len, "ESC %u not detected", ii + 1); return false; } if (_escs[ii].is_hw_inhibited()) { snprintf(reason, reason_len, "ESC %u is hardware inhibited", (ii + 1)); return false; } } } return true; } #endif // HAL_PICCOLO_CAN_ENABLE