/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_Baro_SPL06.h" #include extern const AP_HAL::HAL &hal; #define SPL06_CHIP_ID 0x10 #define SPL06_REG_PRESSURE_B2 0x00 // Pressure MSB Register #define SPL06_REG_PRESSURE_B1 0x01 // Pressure middle byte Register #define SPL06_REG_PRESSURE_B0 0x02 // Pressure LSB Register #define SPL06_REG_PRESSURE_START SPL06_REG_PRESSURE_B2 #define SPL06_PRESSURE_LEN 3 // 24 bits, 3 bytes #define SPL06_REG_TEMPERATURE_B2 0x03 // Temperature MSB Register #define SPL06_REG_TEMPERATURE_B1 0x04 // Temperature middle byte Register #define SPL06_REG_TEMPERATURE_B0 0x05 // Temperature LSB Register #define SPL06_REG_TEMPERATURE_START SPL06_REG_TEMPERATURE_B2 #define SPL06_TEMPERATURE_LEN 3 // 24 bits, 3 bytes #define SPL06_REG_PRESSURE_CFG 0x06 // Pressure config #define SPL06_REG_TEMPERATURE_CFG 0x07 // Temperature config #define SPL06_REG_MODE_AND_STATUS 0x08 // Mode and status #define SPL06_REG_INT_AND_FIFO_CFG 0x09 // Interrupt and FIFO config #define SPL06_REG_INT_STATUS 0x0A // Interrupt and FIFO config #define SPL06_REG_FIFO_STATUS 0x0B // Interrupt and FIFO config #define SPL06_REG_RST 0x0C // Softreset Register #define SPL06_REG_CHIP_ID 0x0D // Chip ID Register #define SPL06_REG_CALIB_COEFFS_START 0x10 #define SPL06_REG_CALIB_COEFFS_END 0x21 #define SPL06_CALIB_COEFFS_LEN (SPL06_REG_CALIB_COEFFS_END - SPL06_REG_CALIB_COEFFS_START + 1) // TEMPERATURE_CFG_REG #define SPL06_TEMP_USE_EXT_SENSOR (1<<7) // MODE_AND_STATUS_REG #define SPL06_MEAS_PRESSURE (1<<0) // measure pressure #define SPL06_MEAS_TEMPERATURE (1<<1) // measure temperature #define SPL06_MEAS_CFG_CONTINUOUS (1<<2) #define SPL06_MEAS_CFG_PRESSURE_RDY (1<<4) #define SPL06_MEAS_CFG_TEMPERATURE_RDY (1<<5) #define SPL06_MEAS_CFG_SENSOR_RDY (1<<6) #define SPL06_MEAS_CFG_COEFFS_RDY (1<<7) // INT_AND_FIFO_CFG_REG #define SPL06_PRESSURE_RESULT_BIT_SHIFT (1<<2) // necessary for pressure oversampling > 8 #define SPL06_TEMPERATURE_RESULT_BIT_SHIFT (1<<3) // necessary for temperature oversampling > 8 // Don't set oversampling higher than 8 or the measurement time will be higher than 20ms (timer period) #define SPL06_PRESSURE_OVERSAMPLING 8 #define SPL06_TEMPERATURE_OVERSAMPLING 8 #define SPL06_OVERSAMPLING_TO_REG_VALUE(n) (ffs(n)-1) AP_Baro_SPL06::AP_Baro_SPL06(AP_Baro &baro, AP_HAL::OwnPtr dev) : AP_Baro_Backend(baro) , _dev(std::move(dev)) { } AP_Baro_Backend *AP_Baro_SPL06::probe(AP_Baro &baro, AP_HAL::OwnPtr dev) { if (!dev) { return nullptr; } if (dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) { dev->set_read_flag(0x80); } AP_Baro_SPL06 *sensor = new AP_Baro_SPL06(baro, std::move(dev)); if (!sensor || !sensor->_init()) { delete sensor; return nullptr; } return sensor; } bool AP_Baro_SPL06::_init() { if (!_dev) { return false; } WITH_SEMAPHORE(_dev->get_semaphore()); _has_sample = false; _dev->set_speed(AP_HAL::Device::SPEED_HIGH); uint8_t whoami; if (!_dev->read_registers(SPL06_REG_CHIP_ID, &whoami, 1) || whoami != SPL06_CHIP_ID) { // not a SPL06 return false; } // read the calibration data uint8_t buf[SPL06_CALIB_COEFFS_LEN]; _dev->read_registers(SPL06_REG_CALIB_COEFFS_START, buf, sizeof(buf)); _c0 = (buf[0] & 0x80 ? 0xF000 : 0) | ((uint16_t)buf[0] << 4) | (((uint16_t)buf[1] & 0xF0) >> 4); _c1 = ((buf[1] & 0x8 ? 0xF000 : 0) | ((uint16_t)buf[1] & 0x0F) << 8) | (uint16_t)buf[2]; _c00 = (buf[3] & 0x80 ? 0xFFF00000 : 0) | ((uint32_t)buf[3] << 12) | ((uint32_t)buf[4] << 4) | (((uint32_t)buf[5] & 0xF0) >> 4); _c10 = (buf[5] & 0x8 ? 0xFFF00000 : 0) | (((uint32_t)buf[5] & 0x0F) << 16) | ((uint32_t)buf[6] << 8) | (uint32_t)buf[7]; _c01 = ((uint16_t)buf[8] << 8) | ((uint16_t)buf[9]); _c11 = ((uint16_t)buf[10] << 8) | (uint16_t)buf[11]; _c20 = ((uint16_t)buf[12] << 8) | (uint16_t)buf[13]; _c21 = ((uint16_t)buf[14] << 8) | (uint16_t)buf[15]; _c30 = ((uint16_t)buf[16] << 8) | (uint16_t)buf[17]; // setup temperature and pressure measurements _dev->setup_checked_registers(3, 20); _dev->write_register(SPL06_REG_TEMPERATURE_CFG, SPL06_TEMP_USE_EXT_SENSOR | SPL06_OVERSAMPLING_TO_REG_VALUE(SPL06_TEMPERATURE_OVERSAMPLING), true); _dev->write_register(SPL06_REG_PRESSURE_CFG, SPL06_OVERSAMPLING_TO_REG_VALUE(SPL06_PRESSURE_OVERSAMPLING), true); uint8_t int_and_fifo_reg_value = 0; if (SPL06_TEMPERATURE_OVERSAMPLING > 8) { int_and_fifo_reg_value |= SPL06_TEMPERATURE_RESULT_BIT_SHIFT; } if (SPL06_PRESSURE_OVERSAMPLING > 8) { int_and_fifo_reg_value |= SPL06_PRESSURE_RESULT_BIT_SHIFT; } _dev->write_register(SPL06_REG_INT_AND_FIFO_CFG, int_and_fifo_reg_value, true); _instance = _frontend.register_sensor(); // request 50Hz update _timer_counter = -1; _dev->register_periodic_callback(20 * AP_USEC_PER_MSEC, FUNCTOR_BIND_MEMBER(&AP_Baro_SPL06::_timer, void)); return true; } int32_t AP_Baro_SPL06::raw_value_scale_factor(uint8_t oversampling) { // From the datasheet page 13 switch(oversampling) { case 1: return 524288; case 2: return 1572864; case 4: return 3670016; case 8: return 7864320; case 16: return 253952; case 32: return 516096; case 64: return 1040384; case 128: return 2088960; default: return -1; // invalid } } // acumulate a new sensor reading void AP_Baro_SPL06::_timer(void) { uint8_t buf[3]; if ((_timer_counter == -1) || (_timer_counter == 49)) { // First call and every second start a temperature measurement (50Hz call) _dev->write_register(SPL06_REG_MODE_AND_STATUS, SPL06_MEAS_TEMPERATURE, false); _timer_counter = 0; // Next cycle we are reading the temperature } else if (_timer_counter == 0) { // A temperature measurement had been started during the previous call _dev->read_registers(SPL06_REG_TEMPERATURE_START, buf, sizeof(buf)); _update_temperature((int32_t)((buf[0] & 0x80 ? 0xFF000000 : 0) | ((uint32_t)buf[0] << 16) | ((uint32_t)buf[1] << 8) | buf[2])); _dev->write_register(SPL06_REG_MODE_AND_STATUS, SPL06_MEAS_PRESSURE, false); _timer_counter += 1; } else { // The rest of the time read the latest pressure and start a new measurement _dev->read_registers(SPL06_REG_PRESSURE_START, buf, sizeof(buf)); _update_pressure((int32_t)((buf[0] & 0x80 ? 0xFF000000 : 0) | ((uint32_t)buf[0] << 16) | ((uint32_t)buf[1] << 8) | buf[2])); _dev->write_register(SPL06_REG_MODE_AND_STATUS, SPL06_MEAS_PRESSURE, false); _timer_counter += 1; } _dev->check_next_register(); } // transfer data to the frontend void AP_Baro_SPL06::update(void) { WITH_SEMAPHORE(_sem); if (!_has_sample) { return; } _copy_to_frontend(_instance, _pressure, _temperature); _has_sample = false; } // calculate temperature void AP_Baro_SPL06::_update_temperature(int32_t temp_raw) { _temp_raw = (float)temp_raw / raw_value_scale_factor(SPL06_TEMPERATURE_OVERSAMPLING); const float temp_comp = (float)_c0 / 2 + _temp_raw * _c1; WITH_SEMAPHORE(_sem); _temperature = temp_comp; } // calculate pressure void AP_Baro_SPL06::_update_pressure(int32_t press_raw) { const float press_raw_sc = (float)press_raw / raw_value_scale_factor(SPL06_PRESSURE_OVERSAMPLING); const float pressure_cal = (float)_c00 + press_raw_sc * ((float)_c10 + press_raw_sc * ((float)_c20 + press_raw_sc * _c30)); const float press_temp_comp = _temp_raw * ((float)_c01 + press_raw_sc * ((float)_c11 + press_raw_sc * _c21)); const float press_comp = pressure_cal + press_temp_comp; if (!pressure_ok(press_comp)) { return; } WITH_SEMAPHORE(_sem); _pressure = press_comp; _has_sample = true; }