/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_MotorsTailsitter.cpp - ArduCopter motors library for tailsitters * */ #include #include #include "AP_MotorsTailsitter.h" #include extern const AP_HAL::HAL& hal; #define SERVO_OUTPUT_RANGE 4500 #define THROTTLE_RANGE 100 // init void AP_MotorsTailsitter::init(motor_frame_class frame_class, motor_frame_type frame_type) { // record successful initialisation if what we setup was the desired frame_class _flags.initialised_ok = (frame_class == MOTOR_FRAME_TAILSITTER); } /// Constructor AP_MotorsTailsitter::AP_MotorsTailsitter(uint16_t loop_rate, uint16_t speed_hz) : AP_MotorsMulticopter(loop_rate, speed_hz) { SRV_Channels::set_rc_frequency(SRV_Channel::k_throttleLeft, speed_hz); SRV_Channels::set_rc_frequency(SRV_Channel::k_throttleRight, speed_hz); } void AP_MotorsTailsitter::output_to_motors() { if (!_flags.initialised_ok) { return; } float throttle = _throttle; float throttle_left = 0; float throttle_right = 0; switch (_spool_mode) { case SHUT_DOWN: throttle = 0; // set limits flags limit.roll_pitch = true; limit.yaw = true; limit.throttle_lower = true; limit.throttle_upper = true; break; case SPIN_WHEN_ARMED: // sends output to motors when armed but not flying throttle = constrain_float(_spin_up_ratio, 0.0f, 1.0f) * _spin_min; // set limits flags limit.roll_pitch = true; limit.yaw = true; limit.throttle_lower = true; limit.throttle_upper = true; break; case SPOOL_UP: case THROTTLE_UNLIMITED: case SPOOL_DOWN: { throttle = _spin_min + throttle * (1 - _spin_min); throttle_left = constrain_float(throttle + _rudder*0.5, _spin_min, 1); throttle_right = constrain_float(throttle - _rudder*0.5, _spin_min, 1); // initialize limits flags limit.roll_pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; break; } } // outputs are setup here, and written to the HAL by the plane servos loop SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, _aileron*SERVO_OUTPUT_RANGE); SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, _elevator*SERVO_OUTPUT_RANGE); SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, _rudder*SERVO_OUTPUT_RANGE); SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, throttle*THROTTLE_RANGE); // also support differential roll with twin motors SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, throttle_left*THROTTLE_RANGE); SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, throttle_right*THROTTLE_RANGE); #if APM_BUILD_TYPE(APM_BUILD_ArduCopter) SRV_Channels::calc_pwm(); SRV_Channels::output_ch_all(); #endif } // calculate outputs to the motors void AP_MotorsTailsitter::output_armed_stabilizing() { _aileron = -_yaw_in; _elevator = _pitch_in; _rudder = _roll_in; _throttle = get_throttle(); // sanity check throttle is above zero and below current limited throttle if (_throttle <= 0.0f) { _throttle = 0.0f; limit.throttle_lower = true; } if (_throttle >= _throttle_thrust_max) { _throttle = _throttle_thrust_max; limit.throttle_upper = true; } _throttle = constrain_float(_throttle, 0.1, 1); }