#define ARM_DELAY 10 #define DISARM_DELAY 10 void arm_motors() { static byte arming_counter; // Arm motor output : Throttle down and full yaw right for more than 2 seconds if (g.rc_3.control_in == 0){ if (g.rc_4.control_in > 2700) { if (arming_counter > ARM_DELAY) { motor_armed = true; } else{ arming_counter++; } }else if (g.rc_4.control_in < -2700) { if (arming_counter > DISARM_DELAY){ motor_armed = false; }else{ arming_counter++; } }else{ arming_counter = 0; } } } /***************************************** * Set the flight control servos based on the current calculated values *****************************************/ void set_servos_4() { static byte num; static byte counteri; int out_min; // Quadcopter mix if (motor_armed == true && motor_auto_safe == true) { out_min = g.rc_3.radio_min; // Throttle is 0 to 1000 only g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, 1000); if(g.rc_3.servo_out > 0) out_min = g.rc_3.radio_min + 50; //Serial.printf("out: %d %d %d %d\t\t", g.rc_1.servo_out, g.rc_2.servo_out, g.rc_3.servo_out, g.rc_4.servo_out); // creates the radio_out and pwm_out values g.rc_1.calc_pwm(); g.rc_2.calc_pwm(); g.rc_3.calc_pwm(); g.rc_4.calc_pwm(); //Serial.printf("out: %d %d %d %d\n", g.rc_1.radio_out, g.rc_2.radio_out, g.rc_3.radio_out, g.rc_4.radio_out); //Serial.printf("yaw: %d ", g.rc_4.radio_out); if(g.frame_type == PLUS_FRAME){ //Serial.println("P_FRAME"); motor_out[CH_1] = g.rc_3.radio_out - g.rc_1.pwm_out; motor_out[CH_2] = g.rc_3.radio_out + g.rc_1.pwm_out; motor_out[CH_3] = g.rc_3.radio_out + g.rc_2.pwm_out; motor_out[CH_4] = g.rc_3.radio_out - g.rc_2.pwm_out; motor_out[CH_1] += g.rc_4.pwm_out; // CCW motor_out[CH_2] += g.rc_4.pwm_out; // CCW motor_out[CH_3] -= g.rc_4.pwm_out; // CW motor_out[CH_4] -= g.rc_4.pwm_out; // CW }else if(g.frame_type == X_FRAME){ //Serial.println("X_FRAME"); int roll_out = g.rc_1.pwm_out * .707; int pitch_out = g.rc_2.pwm_out * .707; motor_out[CH_3] = g.rc_3.radio_out + roll_out + pitch_out; motor_out[CH_2] = g.rc_3.radio_out + roll_out - pitch_out; motor_out[CH_1] = g.rc_3.radio_out - roll_out + pitch_out; motor_out[CH_4] = g.rc_3.radio_out - roll_out - pitch_out; //Serial.printf("\tb4: %d %d %d %d ", motor_out[CH_1], motor_out[CH_2], motor_out[CH_3], motor_out[CH_4]); motor_out[CH_1] += g.rc_4.pwm_out; // CCW motor_out[CH_2] += g.rc_4.pwm_out; // CCW motor_out[CH_3] -= g.rc_4.pwm_out; // CW motor_out[CH_4] -= g.rc_4.pwm_out; // CW //Serial.printf("\tl8r: %d %d %d %d\n", motor_out[CH_1], motor_out[CH_2], motor_out[CH_3], motor_out[CH_4]); }else if(g.frame_type == TRI_FRAME){ //Serial.println("TRI_FRAME"); // Tri-copter power distribution int roll_out = (float)g.rc_1.pwm_out * .866; int pitch_out = g.rc_2.pwm_out / 2; // front two motors motor_out[CH_2] = g.rc_3.radio_out + roll_out + pitch_out; motor_out[CH_1] = g.rc_3.radio_out - roll_out + pitch_out; // rear motors motor_out[CH_4] = g.rc_3.radio_out - g.rc_2.pwm_out; // this is a compensation for the angle of the yaw motor. Its linear, but should work ok. motor_out[CH_4] += (float)(abs(g.rc_4.control_in)) * .013; // servo Yaw APM_RC.OutputCh(CH_7, g.rc_4.radio_out); }else if (g.frame_type == HEXA_FRAME) { //Serial.println("6_FRAME"); int roll_out = (float)g.rc_1.pwm_out * .866; int pitch_out = g.rc_2.pwm_out / 2; //left side motor_out[CH_2] = g.rc_3.radio_out + g.rc_1.pwm_out; // CCW motor_out[CH_3] = g.rc_3.radio_out + roll_out + pitch_out; // CW motor_out[CH_8] = g.rc_3.radio_out + roll_out - pitch_out; // CW //right side motor_out[CH_1] = g.rc_3.radio_out - g.rc_1.pwm_out; // CW motor_out[CH_7] = g.rc_3.radio_out - roll_out + pitch_out; // CCW motor_out[CH_4] = g.rc_3.radio_out - roll_out - pitch_out; // CCW motor_out[CH_7] += g.rc_4.pwm_out; // CCW motor_out[CH_2] += g.rc_4.pwm_out; // CCW motor_out[CH_4] += g.rc_4.pwm_out; // CCW motor_out[CH_3] -= g.rc_4.pwm_out; // CW motor_out[CH_1] -= g.rc_4.pwm_out; // CW motor_out[CH_8] -= g.rc_4.pwm_out; // CW }else{ Serial.print("frame error"); } // limit output so motors don't stop motor_out[CH_1] = constrain(motor_out[CH_1], out_min, g.rc_3.radio_max.get()); motor_out[CH_2] = constrain(motor_out[CH_2], out_min, g.rc_3.radio_max.get()); motor_out[CH_3] = constrain(motor_out[CH_3], out_min, g.rc_3.radio_max.get()); motor_out[CH_4] = constrain(motor_out[CH_4], out_min, g.rc_3.radio_max.get()); if (g.frame_type == HEXA_FRAME) { motor_out[CH_7] = constrain(motor_out[CH_7], out_min, g.rc_3.radio_max.get()); motor_out[CH_8] = constrain(motor_out[CH_8], out_min, g.rc_3.radio_max.get()); } num++; if (num > 50){ num = 0; Serial.printf("t_alt:%ld, alt:%ld, thr: %d sen: ", target_altitude, current_loc.alt, g.rc_3.servo_out); if(altitude_sensor == BARO){ Serial.println("Baro"); }else{ Serial.println("Sonar"); } //Serial.print("!"); //debugging with Channel 6 //g.pid_baro_throttle.kD((float)g.rc_6.control_in / 1000); // 0 to 1 //g.pid_baro_throttle.kP((float)g.rc_6.control_in / 4000); // 0 to .25 /* // ROLL and PITCH // make sure you init_pids() after changing the kP g.pid_stabilize_roll.kP((float)g.rc_6.control_in / 1000); init_pids(); //Serial.print("kP: "); //Serial.println(g.pid_stabilize_roll.kP(),3); //*/ /* // YAW // make sure you init_pids() after changing the kP g.pid_yaw.kP((float)g.rc_6.control_in / 1000); init_pids(); //*/ /* write_int(motor_out[CH_1]); write_int(motor_out[CH_2]); write_int(motor_out[CH_3]); write_int(motor_out[CH_4]); write_int(g.rc_3.servo_out); write_int((int)(cos_yaw_x * 100)); write_int((int)(sin_yaw_y * 100)); write_int((int)(dcm.yaw_sensor / 100)); write_int((int)(nav_yaw / 100)); write_int((int)nav_lat); write_int((int)nav_lon); write_int((int)nav_roll); write_int((int)nav_pitch); //24 write_long(current_loc.lat); //28 write_long(current_loc.lng); //32 write_int((int)current_loc.alt); //34 write_long(next_WP.lat); write_long(next_WP.lng); write_int((int)next_WP.alt); //44 flush(10); //*/ /*Serial.printf("a %ld, e %ld, i %d, t %d, b %4.2f\n", current_loc.alt, altitude_error, (int)g.pid_baro_throttle.get_integrator(), nav_throttle, angle_boost()); */ } // Send commands to motors if(g.rc_3.servo_out > 0){ APM_RC.OutputCh(CH_1, motor_out[CH_1]); APM_RC.OutputCh(CH_2, motor_out[CH_2]); APM_RC.OutputCh(CH_3, motor_out[CH_3]); APM_RC.OutputCh(CH_4, motor_out[CH_4]); // InstantPWM APM_RC.Force_Out0_Out1(); APM_RC.Force_Out2_Out3(); if (g.frame_type == HEXA_FRAME) { APM_RC.OutputCh(CH_7, motor_out[CH_7]); APM_RC.OutputCh(CH_8, motor_out[CH_8]); APM_RC.Force_Out6_Out7(); } }else{ APM_RC.OutputCh(CH_1, g.rc_3.radio_min); APM_RC.OutputCh(CH_2, g.rc_3.radio_min); APM_RC.OutputCh(CH_3, g.rc_3.radio_min); APM_RC.OutputCh(CH_4, g.rc_3.radio_min); // InstantPWM APM_RC.Force_Out0_Out1(); APM_RC.Force_Out2_Out3(); if (g.frame_type == HEXA_FRAME) { APM_RC.OutputCh(CH_7, g.rc_3.radio_min); APM_RC.OutputCh(CH_8, g.rc_3.radio_min); APM_RC.Force_Out6_Out7(); } } }else{ // our motor is unarmed, we're on the ground reset_I(); if(g.rc_3.control_in > 0){ // we have pushed up the throttle // remove safety motor_auto_safe = true; } // Send commands to motors APM_RC.OutputCh(CH_1, g.rc_3.radio_min); APM_RC.OutputCh(CH_2, g.rc_3.radio_min); APM_RC.OutputCh(CH_3, g.rc_3.radio_min); APM_RC.OutputCh(CH_4, g.rc_3.radio_min); if (g.frame_type == HEXA_FRAME) { APM_RC.OutputCh(CH_7, g.rc_3.radio_min); APM_RC.OutputCh(CH_8, g.rc_3.radio_min); } // reset I terms of PID controls reset_I(); // Initialize yaw command to actual yaw when throttle is down... g.rc_4.control_in = ToDeg(dcm.yaw); } }