/// @file GCS.h /// @brief Interface definition for the various Ground Control System // protocols. #pragma once #include #include #include "GCS_MAVLink.h" #include #include #include #include #include "MAVLink_routing.h" #include #include #include #include #include #include #include #include #include #include #include // check if a message will fit in the payload space available #define PAYLOAD_SIZE(chan, id) (GCS_MAVLINK::packet_overhead_chan(chan)+MAVLINK_MSG_ID_ ## id ## _LEN) #define HAVE_PAYLOAD_SPACE(chan, id) (comm_get_txspace(chan) >= PAYLOAD_SIZE(chan, id)) #define CHECK_PAYLOAD_SIZE(id) if (comm_get_txspace(chan) < packet_overhead()+MAVLINK_MSG_ID_ ## id ## _LEN) return false #define CHECK_PAYLOAD_SIZE2(id) if (!HAVE_PAYLOAD_SPACE(chan, id)) return false // GCS Message ID's /// NOTE: to ensure we never block on sending MAVLink messages /// please keep each MSG_ to a single MAVLink message. If need be /// create new MSG_ IDs for additional messages on the same /// stream enum ap_message : uint8_t { MSG_HEARTBEAT, MSG_ATTITUDE, MSG_LOCATION, MSG_EXTENDED_STATUS1, MSG_EXTENDED_STATUS2, MSG_NAV_CONTROLLER_OUTPUT, MSG_CURRENT_WAYPOINT, MSG_VFR_HUD, MSG_SERVO_OUTPUT_RAW, MSG_RADIO_IN, MSG_RAW_IMU1, MSG_RAW_IMU2, MSG_RAW_IMU3, MSG_GPS_RAW, MSG_GPS_RTK, MSG_GPS2_RAW, MSG_GPS2_RTK, MSG_SYSTEM_TIME, MSG_SERVO_OUT, MSG_NEXT_WAYPOINT, MSG_NEXT_PARAM, MSG_FENCE_STATUS, MSG_AHRS, MSG_SIMSTATE, MSG_HWSTATUS, MSG_WIND, MSG_RANGEFINDER, MSG_TERRAIN, MSG_BATTERY2, MSG_CAMERA_FEEDBACK, MSG_MOUNT_STATUS, MSG_OPTICAL_FLOW, MSG_GIMBAL_REPORT, MSG_MAG_CAL_PROGRESS, MSG_MAG_CAL_REPORT, MSG_EKF_STATUS_REPORT, MSG_LOCAL_POSITION, MSG_PID_TUNING, MSG_VIBRATION, MSG_RPM, MSG_MISSION_ITEM_REACHED, MSG_POSITION_TARGET_GLOBAL_INT, MSG_ADSB_VEHICLE, MSG_BATTERY_STATUS, MSG_AOA_SSA, MSG_LANDING, MSG_ESC_TELEMETRY, MSG_NAMED_FLOAT, MSG_LAST // MSG_LAST must be the last entry in this enum }; // convenience macros for defining which ap_message ids are in which streams: #define MAV_STREAM_ENTRY(stream_name) \ { \ GCS_MAVLINK::stream_name, \ stream_name ## _msgs, \ ARRAY_SIZE(stream_name ## _msgs) \ } #define MAV_STREAM_TERMINATOR { (streams)0, nullptr, 0 } /// /// @class GCS_MAVLINK /// @brief MAVLink transport control class /// class GCS_MAVLINK { public: friend class GCS; GCS_MAVLINK(); void update(uint32_t max_time_us=1000); void init(AP_HAL::UARTDriver *port, mavlink_channel_t mav_chan); void setup_uart(const AP_SerialManager& serial_manager, AP_SerialManager::SerialProtocol protocol, uint8_t instance); void send_message(enum ap_message id); void send_text(MAV_SEVERITY severity, const char *fmt, ...); void send_textv(MAV_SEVERITY severity, const char *fmt, va_list arg_list); void data_stream_send(); void queued_param_send(); void queued_waypoint_send(); // packetReceived is called on any successful decode of a mavlink message virtual void packetReceived(const mavlink_status_t &status, mavlink_message_t &msg); // accessor for uart AP_HAL::UARTDriver *get_uart() { return _port; } virtual uint8_t sysid_my_gcs() const = 0; static const struct AP_Param::GroupInfo var_info[]; // set to true if this GCS link is active bool initialised; // NOTE! The streams enum below and the // set of AP_Int16 stream rates _must_ be // kept in the same order enum streams : uint8_t { STREAM_RAW_SENSORS, STREAM_EXTENDED_STATUS, STREAM_RC_CHANNELS, STREAM_RAW_CONTROLLER, STREAM_POSITION, STREAM_EXTRA1, STREAM_EXTRA2, STREAM_EXTRA3, STREAM_PARAMS, STREAM_ADSB, NUM_STREAMS }; // see if we should send a stream now. Called at 50Hz bool stream_trigger(enum streams stream_num); bool is_high_bandwidth() { return chan == MAVLINK_COMM_0; } // return true if this channel has hardware flow control bool have_flow_control(); mavlink_channel_t get_chan() const { return chan; } uint32_t get_last_heartbeat_time() const { return last_heartbeat_time; }; uint32_t last_heartbeat_time; // milliseconds // last time we got a non-zero RSSI from RADIO_STATUS static uint32_t last_radio_status_remrssi_ms; // mission item index to be sent on queued msg, delayed or not uint16_t mission_item_reached_index = AP_MISSION_CMD_INDEX_NONE; // common send functions void send_heartbeat(void) const; void send_meminfo(void); void send_power_status(void); void send_battery_status(const AP_BattMonitor &battery, const uint8_t instance) const; bool send_battery_status() const; bool send_distance_sensor() const; void send_rangefinder_downward() const; bool send_proximity() const; void send_ahrs2(); void send_system_time(); void send_radio_in(); void send_raw_imu(); virtual void send_scaled_pressure3(); // allow sub to override this void send_scaled_pressure(); void send_sensor_offsets(); virtual void send_simstate() const; void send_ahrs(); void send_battery2(); #if AP_AHRS_NAVEKF_AVAILABLE void send_opticalflow(const OpticalFlow &optflow); #endif virtual void send_attitude() const; void send_autopilot_version() const; void send_local_position() const; void send_vfr_hud(); void send_vibration() const; void send_named_float(const char *name, float value) const; void send_home() const; void send_ekf_origin() const; virtual void send_position_target_global_int() { }; void send_servo_output_raw(); static void send_collision_all(const AP_Avoidance::Obstacle &threat, MAV_COLLISION_ACTION behaviour); void send_accelcal_vehicle_position(uint32_t position); // return a bitmap of active channels. Used by libraries to loop // over active channels to send to all active channels static uint8_t active_channel_mask(void) { return mavlink_active; } // return a bitmap of streaming channels static uint8_t streaming_channel_mask(void) { return chan_is_streaming; } // send queued parameters if needed void send_queued_parameters(void); // push send_message() messages and queued statustext messages etc: void retry_deferred(); /* send a MAVLink message to all components with this vehicle's system id This is a no-op if no routes to components have been learned */ static void send_to_components(const mavlink_message_t* msg) { routing.send_to_components(msg); } /* allow forwarding of packets / heartbeats to be blocked as required by some components to reduce traffic */ static void disable_channel_routing(mavlink_channel_t chan) { routing.no_route_mask |= (1U<<(chan-MAVLINK_COMM_0)); } /* search for a component in the routing table with given mav_type and retrieve it's sysid, compid and channel returns if a matching component is found */ static bool find_by_mavtype(uint8_t mav_type, uint8_t &sysid, uint8_t &compid, mavlink_channel_t &channel) { return routing.find_by_mavtype(mav_type, sysid, compid, channel); } // update signing timestamp on GPS lock static void update_signing_timestamp(uint64_t timestamp_usec); // return current packet overhead for a channel static uint8_t packet_overhead_chan(mavlink_channel_t chan); // alternative protocol function handler FUNCTOR_TYPEDEF(protocol_handler_fn_t, bool, uint8_t, AP_HAL::UARTDriver *); struct stream_entries { const streams stream_id; const ap_message *ap_message_ids; const uint8_t num_ap_message_ids; }; // vehicle subclass cpp files should define this: static const struct stream_entries all_stream_entries[]; protected: virtual bool in_hil_mode() const { return false; } // overridable method to check for packet acceptance. Allows for // enforcement of GCS sysid virtual bool accept_packet(const mavlink_status_t &status, mavlink_message_t &msg) { return true; } virtual AP_Mission *get_mission() = 0; virtual AP_Rally *get_rally() const = 0; virtual Compass *get_compass() const = 0; virtual class AP_Camera *get_camera() const = 0; virtual AP_AdvancedFailsafe *get_advanced_failsafe() const { return nullptr; }; virtual AP_VisualOdom *get_visual_odom() const { return nullptr; } virtual bool set_mode(uint8_t mode) = 0; void set_ekf_origin(const Location& loc); virtual MAV_TYPE frame_type() const = 0; virtual MAV_MODE base_mode() const = 0; virtual uint32_t custom_mode() const = 0; virtual MAV_STATE system_status() const = 0; bool waypoint_receiving; // currently receiving // the following two variables are only here because of Tracker uint16_t waypoint_request_i; // request index uint16_t waypoint_request_last; // last request index AP_Param * _queued_parameter; ///< next parameter to // be sent in queue mavlink_channel_t chan; uint8_t packet_overhead(void) const { return packet_overhead_chan(chan); } // saveable rate of each stream AP_Int16 streamRates[NUM_STREAMS]; virtual bool persist_streamrates() const { return false; } void handle_request_data_stream(mavlink_message_t *msg); virtual void handle_command_ack(const mavlink_message_t* msg); void handle_set_mode(mavlink_message_t* msg); void handle_mission_request_list(AP_Mission &mission, mavlink_message_t *msg); void handle_mission_request(AP_Mission &mission, mavlink_message_t *msg); void handle_mission_clear_all(AP_Mission &mission, mavlink_message_t *msg); virtual void handle_mission_set_current(AP_Mission &mission, mavlink_message_t *msg); void handle_mission_count(AP_Mission &mission, mavlink_message_t *msg); void handle_mission_write_partial_list(AP_Mission &mission, mavlink_message_t *msg); bool handle_mission_item(mavlink_message_t *msg, AP_Mission &mission); void handle_common_param_message(mavlink_message_t *msg); void handle_param_set(mavlink_message_t *msg); void handle_param_request_list(mavlink_message_t *msg); void handle_param_request_read(mavlink_message_t *msg); virtual bool params_ready() const { return true; } void handle_system_time_message(const mavlink_message_t *msg); void handle_common_rally_message(mavlink_message_t *msg); void handle_rally_fetch_point(mavlink_message_t *msg); void handle_rally_point(mavlink_message_t *msg); void handle_gimbal_report(AP_Mount &mount, mavlink_message_t *msg) const; void handle_radio_status(mavlink_message_t *msg, DataFlash_Class &dataflash, bool log_radio); void handle_serial_control(const mavlink_message_t *msg); void handle_vision_position_delta(mavlink_message_t *msg); void handle_common_message(mavlink_message_t *msg); void handle_set_gps_global_origin(const mavlink_message_t *msg); void handle_setup_signing(const mavlink_message_t *msg); MAV_RESULT handle_preflight_reboot(const mavlink_command_long_t &packet, bool disable_overrides); MAV_RESULT handle_rc_bind(const mavlink_command_long_t &packet); virtual MAV_RESULT handle_flight_termination(const mavlink_command_long_t &packet); void handle_send_autopilot_version(const mavlink_message_t *msg); MAV_RESULT handle_command_request_autopilot_capabilities(const mavlink_command_long_t &packet); virtual void send_banner(); void handle_device_op_read(mavlink_message_t *msg); void handle_device_op_write(mavlink_message_t *msg); void send_timesync(); // returns the time a timesync message was most likely received: uint64_t timesync_receive_timestamp_ns() const; // returns a timestamp suitable for packing into the ts1 field of TIMESYNC: uint64_t timesync_timestamp_ns() const; void handle_timesync(mavlink_message_t *msg); struct { int64_t sent_ts1; uint32_t last_sent_ms; const uint16_t interval_ms = 10000; } _timesync_request; void handle_statustext(mavlink_message_t *msg); bool telemetry_delayed() const; virtual uint32_t telem_delay() const = 0; MAV_RESULT handle_command_preflight_set_sensor_offsets(const mavlink_command_long_t &packet); MAV_RESULT handle_command_flash_bootloader(const mavlink_command_long_t &packet); // generally this should not be overridden; Plane overrides it to ensure // failsafe isn't triggered during calibation virtual MAV_RESULT handle_command_preflight_calibration(const mavlink_command_long_t &packet); virtual MAV_RESULT _handle_command_preflight_calibration(const mavlink_command_long_t &packet); virtual MAV_RESULT _handle_command_preflight_calibration_baro(); MAV_RESULT handle_command_mag_cal(const mavlink_command_long_t &packet); MAV_RESULT handle_command_long_message(mavlink_command_long_t &packet); MAV_RESULT handle_command_camera(const mavlink_command_long_t &packet); MAV_RESULT handle_command_do_send_banner(const mavlink_command_long_t &packet); MAV_RESULT handle_command_do_gripper(mavlink_command_long_t &packet); MAV_RESULT handle_command_do_set_mode(const mavlink_command_long_t &packet); MAV_RESULT handle_command_get_home_position(const mavlink_command_long_t &packet); // vehicle-overridable message send function virtual bool try_send_message(enum ap_message id); // message sending functions: bool try_send_compass_message(enum ap_message id); bool try_send_mission_message(enum ap_message id); void send_hwstatus(); void handle_data_packet(mavlink_message_t *msg); // these two methods are called after current_loc is updated: virtual int32_t global_position_int_alt() const; virtual int32_t global_position_int_relative_alt() const; // these methods are called after vfr_hud_velned is updated virtual float vfr_hud_climbrate() const; virtual float vfr_hud_airspeed() const; virtual int16_t vfr_hud_throttle() const { return 0; } virtual float vfr_hud_alt() const; Vector3f vfr_hud_velned; static constexpr const float magic_force_arm_value = 2989.0f; static constexpr const float magic_force_disarm_value = 21196.0f; private: float adjust_rate_for_stream_trigger(enum streams stream_num); MAV_RESULT _set_mode_common(const MAV_MODE base_mode, const uint32_t custom_mode); virtual void handleMessage(mavlink_message_t * msg) = 0; MAV_RESULT handle_servorelay_message(mavlink_command_long_t &packet); bool calibrate_gyros(); /// The stream we are communicating over AP_HAL::UARTDriver *_port; /// Perform queued sending operations /// enum ap_var_type _queued_parameter_type; ///< type of the next // parameter AP_Param::ParamToken _queued_parameter_token; ///AP_Param token for // next() call uint16_t _queued_parameter_index; ///< next queued // parameter's index uint16_t _queued_parameter_count; ///< saved count of // parameters for // queued send uint32_t _queued_parameter_send_time_ms; /// Count the number of reportable parameters. /// /// Not all parameters can be reported via MAVlink. We count the number // that are /// so that we can report to a GCS the number of parameters it should // expect when it /// requests the full set. /// /// @return The number of reportable parameters. /// uint16_t packet_drops; // waypoints uint16_t waypoint_dest_sysid; // where to send requests uint16_t waypoint_dest_compid; // " uint16_t waypoint_count; uint32_t waypoint_timelast_receive; // milliseconds uint32_t waypoint_timelast_request; // milliseconds const uint16_t waypoint_receive_timeout = 8000; // milliseconds // number of 50Hz ticks until we next send this stream uint8_t stream_ticks[NUM_STREAMS]; // number of extra ticks to add to slow things down for the radio uint8_t stream_slowdown; // perf counters AP_HAL::Util::perf_counter_t _perf_packet; AP_HAL::Util::perf_counter_t _perf_update; char _perf_packet_name[16]; char _perf_update_name[16]; // deferred message handling. We size the deferred_message // ringbuffer so we can defer every message type enum ap_message deferred_messages[MSG_LAST]; uint8_t next_deferred_message; uint8_t num_deferred_messages; // time when we missed sending a parameter for GCS static uint32_t reserve_param_space_start_ms; // bitmask of what mavlink channels are active static uint8_t mavlink_active; // bitmask of what mavlink channels are streaming static uint8_t chan_is_streaming; // mavlink routing object static MAVLink_routing routing; // pointer to static frsky_telem for queueing of text messages static AP_Frsky_Telem *frsky_telemetry_p; static const AP_SerialManager *serialmanager_p; struct pending_param_request { mavlink_channel_t chan; int16_t param_index; char param_name[AP_MAX_NAME_SIZE+1]; }; struct pending_param_reply { mavlink_channel_t chan; float value; enum ap_var_type p_type; int16_t param_index; uint16_t count; char param_name[AP_MAX_NAME_SIZE+1]; }; // queue of pending parameter requests and replies static ObjectBuffer param_requests; static ObjectBuffer param_replies; // have we registered the IO timer callback? static bool param_timer_registered; // IO timer callback for parameters void param_io_timer(void); // send an async parameter reply void send_parameter_reply(void); void send_distance_sensor(const AP_RangeFinder_Backend *sensor, const uint8_t instance) const; virtual bool handle_guided_request(AP_Mission::Mission_Command &cmd) = 0; virtual void handle_change_alt_request(AP_Mission::Mission_Command &cmd) = 0; void handle_common_mission_message(mavlink_message_t *msg); void handle_vicon_position_estimate(mavlink_message_t *msg); void handle_vision_position_estimate(mavlink_message_t *msg); void handle_global_vision_position_estimate(mavlink_message_t *msg); void handle_att_pos_mocap(mavlink_message_t *msg); void handle_common_vision_position_estimate_data(const uint64_t usec, const float x, const float y, const float z, const float roll, const float pitch, const float yaw, const uint16_t payload_size); void log_vision_position_estimate_data(const uint64_t usec, const float x, const float y, const float z, const float roll, const float pitch, const float yaw); void push_deferred_messages(); void lock_channel(mavlink_channel_t chan, bool lock); /* correct an offboard timestamp in microseconds to a local time since boot in milliseconds */ uint32_t correct_offboard_timestamp_usec_to_ms(uint64_t offboard_usec, uint16_t payload_size); mavlink_signing_t signing; static mavlink_signing_streams_t signing_streams; static uint32_t last_signing_save_ms; static StorageAccess _signing_storage; static bool signing_key_save(const struct SigningKey &key); static bool signing_key_load(struct SigningKey &key); void load_signing_key(void); bool signing_enabled(void) const; static void save_signing_timestamp(bool force_save_now); // alternative protocol handler support struct { GCS_MAVLINK::protocol_handler_fn_t handler; uint32_t last_mavlink_ms; uint32_t last_alternate_ms; bool active; } alternative; // state associated with offboard transport lag correction struct { bool initialised; int64_t link_offset_usec; uint32_t min_sample_counter; int64_t min_sample_us; } lag_correction; // we cache the current location and send it even if the AHRS has // no idea where we are: struct Location global_position_current_loc; void send_global_position_int(); }; /// @class GCS /// @brief global GCS object class GCS { public: GCS() { if (_singleton == nullptr) { _singleton = this; } else { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL // this is a serious problem, but we don't need to kill a // real vehicle AP_HAL::panic("GCS must be singleton"); #endif } }; static class GCS *instance() { return _singleton; } void send_text(MAV_SEVERITY severity, const char *fmt, ...); void send_textv(MAV_SEVERITY severity, const char *fmt, va_list arg_list); virtual void send_statustext(MAV_SEVERITY severity, uint8_t dest_bitmask, const char *text); void service_statustext(void); virtual GCS_MAVLINK &chan(const uint8_t ofs) = 0; virtual const GCS_MAVLINK &chan(const uint8_t ofs) const = 0; virtual uint8_t num_gcs() const = 0; void send_message(enum ap_message id); void send_mission_item_reached_message(uint16_t mission_index); void send_named_float(const char *name, float value) const; void send_home() const; void send_ekf_origin() const; void send_parameter_value(const char *param_name, ap_var_type param_type, float param_value); // push send_message() messages and queued statustext messages etc: void retry_deferred(); void data_stream_send(); void update(); virtual void setup_uarts(AP_SerialManager &serial_manager); bool out_of_time() const { return _out_of_time; } void set_out_of_time(bool val) { _out_of_time = val; } /* set a dataflash pointer for logging */ void set_dataflash(DataFlash_Class *dataflash) { dataflash_p = dataflash; } // pointer to static dataflash for logging of text messages DataFlash_Class *dataflash_p; /* set a frsky_telem pointer for queueing */ void register_frsky_telemetry_callback(AP_Frsky_Telem *frsky_telemetry) { frsky_telemetry_p = frsky_telemetry; } // static frsky_telem pointer to support queueing text messages AP_Frsky_Telem *frsky_telemetry_p; // install an alternative protocol handler bool install_alternative_protocol(mavlink_channel_t chan, GCS_MAVLINK::protocol_handler_fn_t handler); // get the VFR_HUD throttle int16_t get_hud_throttle(void) const { return num_gcs()>0?chan(0).vfr_hud_throttle():0; } private: static GCS *_singleton; struct statustext_t { uint8_t bitmask; mavlink_statustext_t msg; }; #if HAL_CPU_CLASS <= HAL_CPU_CLASS_150 || CONFIG_HAL_BOARD == HAL_BOARD_SITL static const uint8_t _status_capacity = 5; #else static const uint8_t _status_capacity = 30; #endif ObjectArray _statustext_queue{_status_capacity}; // true if we are running short on time in our main loop bool _out_of_time; }; GCS &gcs();