/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include <assert.h> #include <AP_Common/AP_Common.h> #include <AP_HAL/AP_HAL.h> #include <AP_Math/AP_Math.h> #include <AP_Notify/AP_Notify.h> #include <AP_Vehicle/AP_Vehicle.h> #include "AP_InertialSensor.h" #include "AP_InertialSensor_Backend.h" #include "AP_InertialSensor_Flymaple.h" #include "AP_InertialSensor_HIL.h" #include "AP_InertialSensor_L3G4200D.h" #include "AP_InertialSensor_LSM9DS0.h" #include "AP_InertialSensor_MPU6000.h" #include "AP_InertialSensor_MPU9250.h" #include "AP_InertialSensor_PX4.h" #include "AP_InertialSensor_QURT.h" #include "AP_InertialSensor_SITL.h" #include "AP_InertialSensor_qflight.h" /* enable TIMING_DEBUG to track down scheduling issues with the main loop. Output is on the debug console */ #define TIMING_DEBUG 0 #if TIMING_DEBUG #include <stdio.h> #define timing_printf(fmt, args...) do { printf("[timing] " fmt, ##args); } while(0) #else #define timing_printf(fmt, args...) #endif extern const AP_HAL::HAL& hal; #if APM_BUILD_TYPE(APM_BUILD_ArduCopter) #define DEFAULT_GYRO_FILTER 20 #define DEFAULT_ACCEL_FILTER 20 #define DEFAULT_STILL_THRESH 2.5f #elif APM_BUILD_TYPE(APM_BUILD_APMrover2) #define DEFAULT_GYRO_FILTER 10 #define DEFAULT_ACCEL_FILTER 10 #define DEFAULT_STILL_THRESH 0.1f #else #define DEFAULT_GYRO_FILTER 20 #define DEFAULT_ACCEL_FILTER 20 #define DEFAULT_STILL_THRESH 0.1f #endif #define SAMPLE_UNIT 1 // Class level parameters const AP_Param::GroupInfo AP_InertialSensor::var_info[] = { // @Param: PRODUCT_ID // @DisplayName: IMU Product ID // @Description: Which type of IMU is installed (read-only). // @User: Advanced // @Values: 0:Unknown,1:APM1-1280,2:APM1-2560,88:APM2,3:SITL,4:PX4v1,5:PX4v2,256:Flymaple,257:Linux AP_GROUPINFO("PRODUCT_ID", 0, AP_InertialSensor, _product_id, 0), /* The following parameter indexes and reserved from previous use as accel offsets and scaling from before the 16g change in the PX4 backend: ACCSCAL : 1 ACCOFFS : 2 MPU6K_FILTER: 4 ACC2SCAL : 5 ACC2OFFS : 6 ACC3SCAL : 8 ACC3OFFS : 9 CALSENSFRAME : 11 */ // @Param: GYROFFS_X // @DisplayName: Gyro offsets of X axis // @Description: Gyro sensor offsets of X axis. This is setup on each boot during gyro calibrations // @Units: rad/s // @User: Advanced // @Param: GYROFFS_Y // @DisplayName: Gyro offsets of Y axis // @Description: Gyro sensor offsets of Y axis. This is setup on each boot during gyro calibrations // @Units: rad/s // @User: Advanced // @Param: GYROFFS_Z // @DisplayName: Gyro offsets of Z axis // @Description: Gyro sensor offsets of Z axis. This is setup on each boot during gyro calibrations // @Units: rad/s // @User: Advanced AP_GROUPINFO("GYROFFS", 3, AP_InertialSensor, _gyro_offset[0], 0), // @Param: GYR2OFFS_X // @DisplayName: Gyro2 offsets of X axis // @Description: Gyro2 sensor offsets of X axis. This is setup on each boot during gyro calibrations // @Units: rad/s // @User: Advanced // @Param: GYR2OFFS_Y // @DisplayName: Gyro2 offsets of Y axis // @Description: Gyro2 sensor offsets of Y axis. This is setup on each boot during gyro calibrations // @Units: rad/s // @User: Advanced // @Param: GYR2OFFS_Z // @DisplayName: Gyro2 offsets of Z axis // @Description: Gyro2 sensor offsets of Z axis. This is setup on each boot during gyro calibrations // @Units: rad/s // @User: Advanced AP_GROUPINFO("GYR2OFFS", 7, AP_InertialSensor, _gyro_offset[1], 0), // @Param: GYR3OFFS_X // @DisplayName: Gyro3 offsets of X axis // @Description: Gyro3 sensor offsets of X axis. This is setup on each boot during gyro calibrations // @Units: rad/s // @User: Advanced // @Param: GYR3OFFS_Y // @DisplayName: Gyro3 offsets of Y axis // @Description: Gyro3 sensor offsets of Y axis. This is setup on each boot during gyro calibrations // @Units: rad/s // @User: Advanced // @Param: GYR3OFFS_Z // @DisplayName: Gyro3 offsets of Z axis // @Description: Gyro3 sensor offsets of Z axis. This is setup on each boot during gyro calibrations // @Units: rad/s // @User: Advanced AP_GROUPINFO("GYR3OFFS", 10, AP_InertialSensor, _gyro_offset[2], 0), // @Param: ACCSCAL_X // @DisplayName: Accelerometer scaling of X axis // @Description: Accelerometer scaling of X axis. Calculated during acceleration calibration routine // @Range: 0.8 1.2 // @User: Advanced // @Param: ACCSCAL_Y // @DisplayName: Accelerometer scaling of Y axis // @Description: Accelerometer scaling of Y axis Calculated during acceleration calibration routine // @Range: 0.8 1.2 // @User: Advanced // @Param: ACCSCAL_Z // @DisplayName: Accelerometer scaling of Z axis // @Description: Accelerometer scaling of Z axis Calculated during acceleration calibration routine // @Range: 0.8 1.2 // @User: Advanced AP_GROUPINFO("ACCSCAL", 12, AP_InertialSensor, _accel_scale[0], 0), // @Param: ACCOFFS_X // @DisplayName: Accelerometer offsets of X axis // @Description: Accelerometer offsets of X axis. This is setup using the acceleration calibration or level operations // @Units: m/s/s // @Range: -3.5 3.5 // @User: Advanced // @Param: ACCOFFS_Y // @DisplayName: Accelerometer offsets of Y axis // @Description: Accelerometer offsets of Y axis. This is setup using the acceleration calibration or level operations // @Units: m/s/s // @Range: -3.5 3.5 // @User: Advanced // @Param: ACCOFFS_Z // @DisplayName: Accelerometer offsets of Z axis // @Description: Accelerometer offsets of Z axis. This is setup using the acceleration calibration or level operations // @Units: m/s/s // @Range: -3.5 3.5 // @User: Advanced AP_GROUPINFO("ACCOFFS", 13, AP_InertialSensor, _accel_offset[0], 0), // @Param: ACC2SCAL_X // @DisplayName: Accelerometer2 scaling of X axis // @Description: Accelerometer2 scaling of X axis. Calculated during acceleration calibration routine // @Range: 0.8 1.2 // @User: Advanced // @Param: ACC2SCAL_Y // @DisplayName: Accelerometer2 scaling of Y axis // @Description: Accelerometer2 scaling of Y axis Calculated during acceleration calibration routine // @Range: 0.8 1.2 // @User: Advanced // @Param: ACC2SCAL_Z // @DisplayName: Accelerometer2 scaling of Z axis // @Description: Accelerometer2 scaling of Z axis Calculated during acceleration calibration routine // @Range: 0.8 1.2 // @User: Advanced AP_GROUPINFO("ACC2SCAL", 14, AP_InertialSensor, _accel_scale[1], 0), // @Param: ACC2OFFS_X // @DisplayName: Accelerometer2 offsets of X axis // @Description: Accelerometer2 offsets of X axis. This is setup using the acceleration calibration or level operations // @Units: m/s/s // @Range: -3.5 3.5 // @User: Advanced // @Param: ACC2OFFS_Y // @DisplayName: Accelerometer2 offsets of Y axis // @Description: Accelerometer2 offsets of Y axis. This is setup using the acceleration calibration or level operations // @Units: m/s/s // @Range: -3.5 3.5 // @User: Advanced // @Param: ACC2OFFS_Z // @DisplayName: Accelerometer2 offsets of Z axis // @Description: Accelerometer2 offsets of Z axis. This is setup using the acceleration calibration or level operations // @Units: m/s/s // @Range: -3.5 3.5 // @User: Advanced AP_GROUPINFO("ACC2OFFS", 15, AP_InertialSensor, _accel_offset[1], 0), // @Param: ACC3SCAL_X // @DisplayName: Accelerometer3 scaling of X axis // @Description: Accelerometer3 scaling of X axis. Calculated during acceleration calibration routine // @Range: 0.8 1.2 // @User: Advanced // @Param: ACC3SCAL_Y // @DisplayName: Accelerometer3 scaling of Y axis // @Description: Accelerometer3 scaling of Y axis Calculated during acceleration calibration routine // @Range: 0.8 1.2 // @User: Advanced // @Param: ACC3SCAL_Z // @DisplayName: Accelerometer3 scaling of Z axis // @Description: Accelerometer3 scaling of Z axis Calculated during acceleration calibration routine // @Range: 0.8 1.2 // @User: Advanced AP_GROUPINFO("ACC3SCAL", 16, AP_InertialSensor, _accel_scale[2], 0), // @Param: ACC3OFFS_X // @DisplayName: Accelerometer3 offsets of X axis // @Description: Accelerometer3 offsets of X axis. This is setup using the acceleration calibration or level operations // @Units: m/s/s // @Range: -3.5 3.5 // @User: Advanced // @Param: ACC3OFFS_Y // @DisplayName: Accelerometer3 offsets of Y axis // @Description: Accelerometer3 offsets of Y axis. This is setup using the acceleration calibration or level operations // @Units: m/s/s // @Range: -3.5 3.5 // @User: Advanced // @Param: ACC3OFFS_Z // @DisplayName: Accelerometer3 offsets of Z axis // @Description: Accelerometer3 offsets of Z axis. This is setup using the acceleration calibration or level operations // @Units: m/s/s // @Range: -3.5 3.5 // @User: Advanced AP_GROUPINFO("ACC3OFFS", 17, AP_InertialSensor, _accel_offset[2], 0), // @Param: GYRO_FILTER // @DisplayName: Gyro filter cutoff frequency // @Description: Filter cutoff frequency for gyroscopes. This can be set to a lower value to try to cope with very high vibration levels in aircraft. This option takes effect on the next reboot. A value of zero means no filtering (not recommended!) // @Units: Hz // @Range: 0 127 // @User: Advanced AP_GROUPINFO("GYRO_FILTER", 18, AP_InertialSensor, _gyro_filter_cutoff, DEFAULT_GYRO_FILTER), // @Param: ACCEL_FILTER // @DisplayName: Accel filter cutoff frequency // @Description: Filter cutoff frequency for accelerometers. This can be set to a lower value to try to cope with very high vibration levels in aircraft. This option takes effect on the next reboot. A value of zero means no filtering (not recommended!) // @Units: Hz // @Range: 0 127 // @User: Advanced AP_GROUPINFO("ACCEL_FILTER", 19, AP_InertialSensor, _accel_filter_cutoff, DEFAULT_ACCEL_FILTER), // @Param: USE // @DisplayName: Use first IMU for attitude, velocity and position estimates // @Description: Use first IMU for attitude, velocity and position estimates // @Values: 0:Disabled,1:Enabled // @User: Advanced AP_GROUPINFO("USE", 20, AP_InertialSensor, _use[0], 1), // @Param: USE2 // @DisplayName: Use second IMU for attitude, velocity and position estimates // @Description: Use second IMU for attitude, velocity and position estimates // @Values: 0:Disabled,1:Enabled // @User: Advanced AP_GROUPINFO("USE2", 21, AP_InertialSensor, _use[1], 1), // @Param: USE3 // @DisplayName: Use third IMU for attitude, velocity and position estimates // @Description: Use third IMU for attitude, velocity and position estimates // @Values: 0:Disabled,1:Enabled // @User: Advanced AP_GROUPINFO("USE3", 22, AP_InertialSensor, _use[2], 0), // @Param: STILL_THRESH // @DisplayName: Stillness threshold for detecting if we are moving // @Description: Threshold to tolerate vibration to determine if vehicle is motionless. This depends on the frame type and if there is a constant vibration due to motors before launch or after landing. Total motionless is about 0.05. Suggested values: Planes/rover use 0.1, multirotors use 1, tradHeli uses 5 // @Range: 0.05 50 // @User: Advanced AP_GROUPINFO("STILL_THRESH", 23, AP_InertialSensor, _still_threshold, DEFAULT_STILL_THRESH), // @Param: GYR_CAL // @DisplayName: Gyro Calibration scheme // @Description: Conrols when automatic gyro calibration is performed // @Values: 0:Never, 1:Start-up only // @User: Advanced AP_GROUPINFO("GYR_CAL", 24, AP_InertialSensor, _gyro_cal_timing, 1), // @Param: TRIM_OPTION // @DisplayName: Accel cal trim option // @Description: Specifies how the accel cal routine determines the trims // @User: Advanced // @Values: 0:Don't adjust the trims,1:Assume first orientation was level,2:Assume ACC_BODYFIX is perfectly aligned to the vehicle AP_GROUPINFO("TRIM_OPTION", 25, AP_InertialSensor, _trim_option, 1), // @Param: ACC_BODYFIX // @DisplayName: Body-fixed accelerometer // @Description: The body-fixed accelerometer to be used for trim calculation // @User: Advanced // @Values: 1:IMU 1,2:IMU 2,3:IMU 3 AP_GROUPINFO("ACC_BODYFIX", 26, AP_InertialSensor, _acc_body_aligned, 2), /* NOTE: parameter indexes have gaps above. When adding new parameters check for conflicts carefully */ AP_GROUPEND }; AP_InertialSensor *AP_InertialSensor::_s_instance = nullptr; AP_InertialSensor::AP_InertialSensor() : _gyro_count(0), _accel_count(0), _backend_count(0), _accel(), _gyro(), _board_orientation(ROTATION_NONE), _primary_gyro(0), _primary_accel(0), _hil_mode(false), _calibrating(false), _log_raw_data(false), _backends_detected(false), _dataflash(NULL), _accel_cal_requires_reboot(false) { if (_s_instance) { AP_HAL::panic("Too many inertial sensors"); } _s_instance = this; AP_Param::setup_object_defaults(this, var_info); for (uint8_t i=0; i<INS_MAX_BACKENDS; i++) { _backends[i] = NULL; } for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) { _accel_error_count[i] = 0; _gyro_error_count[i] = 0; _gyro_cal_ok[i] = true; _accel_clip_count[i] = 0; _accel_max_abs_offsets[i] = 3.5f; _accel_raw_sample_rates[i] = 0; _gyro_raw_sample_rates[i] = 0; _delta_velocity_acc[i].zero(); _delta_velocity_acc_dt[i] = 0; _delta_angle_acc[i].zero(); _delta_angle_acc_dt[i] = 0; _last_delta_angle[i].zero(); _last_raw_gyro[i].zero(); } for (uint8_t i=0; i<INS_VIBRATION_CHECK_INSTANCES; i++) { _accel_vibe_floor_filter[i].set_cutoff_frequency(AP_INERTIAL_SENSOR_ACCEL_VIBE_FLOOR_FILT_HZ); _accel_vibe_filter[i].set_cutoff_frequency(AP_INERTIAL_SENSOR_ACCEL_VIBE_FILT_HZ); } memset(_delta_velocity_valid,0,sizeof(_delta_velocity_valid)); memset(_delta_angle_valid,0,sizeof(_delta_angle_valid)); AP_AccelCal::register_client(this); } /* * Get the AP_InertialSensor singleton */ AP_InertialSensor *AP_InertialSensor::get_instance() { if (!_s_instance) _s_instance = new AP_InertialSensor(); return _s_instance; } /* register a new gyro instance */ uint8_t AP_InertialSensor::register_gyro(uint16_t raw_sample_rate_hz) { if (_gyro_count == INS_MAX_INSTANCES) { AP_HAL::panic("Too many gyros"); } _gyro_raw_sample_rates[_gyro_count] = raw_sample_rate_hz; return _gyro_count++; } /* register a new accel instance */ uint8_t AP_InertialSensor::register_accel(uint16_t raw_sample_rate_hz) { if (_accel_count == INS_MAX_INSTANCES) { AP_HAL::panic("Too many accels"); } _accel_raw_sample_rates[_accel_count] = raw_sample_rate_hz; return _accel_count++; } /* * Start all backends for gyro and accel measurements. It automatically calls * detect_backends() if it has not been called already. */ void AP_InertialSensor::_start_backends() { detect_backends(); for (uint8_t i = 0; i < _backend_count; i++) { _backends[i]->start(); } if (_gyro_count == 0 || _accel_count == 0) { AP_HAL::panic("INS needs at least 1 gyro and 1 accel"); } } /* Find the N instance of the backend that has already been successfully detected */ AP_InertialSensor_Backend *AP_InertialSensor::_find_backend(int16_t backend_id, uint8_t instance) { assert(_backends_detected); uint8_t found = 0; for (uint8_t i = 0; i < _backend_count; i++) { int16_t id = _backends[i]->get_id(); if (id < 0 || id != backend_id) continue; if (instance == found) { return _backends[i]; } else { found++; } } return nullptr; } void AP_InertialSensor::init(uint16_t sample_rate) { // remember the sample rate _sample_rate = sample_rate; _loop_delta_t = 1.0f / sample_rate; if (_gyro_count == 0 && _accel_count == 0) { _start_backends(); } // initialise accel scale if need be. This is needed as we can't // give non-zero default values for vectors in AP_Param for (uint8_t i=0; i<get_accel_count(); i++) { if (_accel_scale[i].get().is_zero()) { _accel_scale[i].set(Vector3f(1,1,1)); } } // calibrate gyros unless gyro calibration has been disabled if (gyro_calibration_timing() != GYRO_CAL_NEVER) { _init_gyro(); } _sample_period_usec = 1000*1000UL / _sample_rate; // establish the baseline time between samples _delta_time = 0; _next_sample_usec = 0; _last_sample_usec = 0; _have_sample = false; } void AP_InertialSensor::_add_backend(AP_InertialSensor_Backend *backend) { if (!backend) return; if (_backend_count == INS_MAX_BACKENDS) AP_HAL::panic("Too many INS backends"); _backends[_backend_count++] = backend; } /* detect available backends for this board */ void AP_InertialSensor::detect_backends(void) { if (_backends_detected) return; _backends_detected = true; if (_hil_mode) { _add_backend(AP_InertialSensor_HIL::detect(*this)); return; } #if CONFIG_HAL_BOARD == HAL_BOARD_SITL _add_backend(AP_InertialSensor_SITL::detect(*this)); #elif HAL_INS_DEFAULT == HAL_INS_HIL _add_backend(AP_InertialSensor_HIL::detect(*this)); #elif HAL_INS_DEFAULT == HAL_INS_MPU60XX_SPI _add_backend(AP_InertialSensor_MPU6000::detect_spi(*this)); #elif HAL_INS_DEFAULT == HAL_INS_BH _add_backend(AP_InertialSensor_MPU6000::detect_i2c(*this, hal.i2c, HAL_INS_MPU60XX_I2C_ADDR)); _add_backend(AP_InertialSensor_MPU9250::detect(*this, hal.spi->device(AP_HAL::SPIDevice_MPU9250))); #elif HAL_INS_DEFAULT == HAL_INS_MPU60XX_I2C && HAL_INS_MPU60XX_I2C_BUS == 2 _add_backend(AP_InertialSensor_MPU6000::detect_i2c(*this, hal.i2c2, HAL_INS_MPU60XX_I2C_ADDR)); #elif HAL_INS_DEFAULT == HAL_INS_PX4 || HAL_INS_DEFAULT == HAL_INS_VRBRAIN _add_backend(AP_InertialSensor_PX4::detect(*this)); #elif HAL_INS_DEFAULT == HAL_INS_MPU9250 _add_backend(AP_InertialSensor_MPU9250::detect(*this, hal.spi->device(AP_HAL::SPIDevice_MPU9250))); #elif HAL_INS_DEFAULT == HAL_INS_FLYMAPLE _add_backend(AP_InertialSensor_Flymaple::detect(*this)); #elif HAL_INS_DEFAULT == HAL_INS_LSM9DS0 _add_backend(AP_InertialSensor_LSM9DS0::detect(*this)); #elif HAL_INS_DEFAULT == HAL_INS_L3G4200D _add_backend(AP_InertialSensor_L3G4200D::detect(*this)); #elif HAL_INS_DEFAULT == HAL_INS_RASPILOT //_add_backend(AP_InertialSensor_L3GD20::detect); //_add_backend(AP_InertialSensor_LSM303D::detect); _add_backend(AP_InertialSensor_MPU6000::detect_spi(*this)); #elif HAL_INS_DEFAULT == HAL_INS_MPU9250_I2C _add_backend(AP_InertialSensor_MPU9250::detect_i2c(*this, HAL_INS_MPU9250_I2C_POINTER, HAL_INS_MPU9250_I2C_ADDR)); #elif HAL_INS_DEFAULT == HAL_INS_QFLIGHT _add_backend(AP_InertialSensor_QFLIGHT::detect(*this)); #elif HAL_INS_DEFAULT == HAL_INS_QURT _add_backend(AP_InertialSensor_QURT::detect(*this)); #else #error Unrecognised HAL_INS_TYPE setting #endif if (_backend_count == 0) { AP_HAL::panic("No INS backends available"); } // set the product ID to the ID of the first backend _product_id.set(_backends[0]->product_id()); } /* _calculate_trim - calculates the x and y trim angles. The accel_sample must be correctly scaled, offset and oriented for the board */ bool AP_InertialSensor::_calculate_trim(const Vector3f &accel_sample, float& trim_roll, float& trim_pitch) { trim_pitch = atan2f(accel_sample.x, pythagorous2(accel_sample.y, accel_sample.z)); trim_roll = atan2f(-accel_sample.y, -accel_sample.z); if (fabsf(trim_roll) > radians(10) || fabsf(trim_pitch) > radians(10)) { hal.console->println("trim over maximum of 10 degrees"); return false; } hal.console->printf("Trim OK: roll=%.2f pitch=%.2f\n", (double)degrees(trim_roll), (double)degrees(trim_pitch)); return true; } void AP_InertialSensor::init_gyro() { _init_gyro(); // save calibration _save_parameters(); } // accelerometer clipping reporting uint32_t AP_InertialSensor::get_accel_clip_count(uint8_t instance) const { if (instance >= get_accel_count()) { return 0; } return _accel_clip_count[instance]; } // get_gyro_health_all - return true if all gyros are healthy bool AP_InertialSensor::get_gyro_health_all(void) const { for (uint8_t i=0; i<get_gyro_count(); i++) { if (!get_gyro_health(i)) { return false; } } // return true if we have at least one gyro return (get_gyro_count() > 0); } // gyro_calibration_ok_all - returns true if all gyros were calibrated successfully bool AP_InertialSensor::gyro_calibrated_ok_all() const { for (uint8_t i=0; i<get_gyro_count(); i++) { if (!gyro_calibrated_ok(i)) { return false; } } return (get_gyro_count() > 0); } // return true if gyro instance should be used (must be healthy and have it's use parameter set to 1) bool AP_InertialSensor::use_gyro(uint8_t instance) const { if (instance >= INS_MAX_INSTANCES) { return false; } return (get_gyro_health(instance) && _use[instance]); } // get_accel_health_all - return true if all accels are healthy bool AP_InertialSensor::get_accel_health_all(void) const { for (uint8_t i=0; i<get_accel_count(); i++) { if (!get_accel_health(i)) { return false; } } // return true if we have at least one accel return (get_accel_count() > 0); } /* calculate the trim_roll and trim_pitch. This is used for redoing the trim without needing a full accel cal */ bool AP_InertialSensor::calibrate_trim(float &trim_roll, float &trim_pitch) { Vector3f level_sample; // exit immediately if calibration is already in progress if (_calibrating) { return false; } _calibrating = true; const uint8_t update_dt_milliseconds = (uint8_t)(1000.0f/get_sample_rate()+0.5f); // wait 100ms for ins filter to rise for (uint8_t k=0; k<100/update_dt_milliseconds; k++) { wait_for_sample(); update(); hal.scheduler->delay(update_dt_milliseconds); } uint32_t num_samples = 0; while (num_samples < 400/update_dt_milliseconds) { wait_for_sample(); // read samples from ins update(); // capture sample Vector3f samp; samp = get_accel(0); level_sample += samp; if (!get_accel_health(0)) { goto failed; } hal.scheduler->delay(update_dt_milliseconds); num_samples++; } level_sample /= num_samples; if (!_calculate_trim(level_sample, trim_roll, trim_pitch)) { goto failed; } _calibrating = false; return true; failed: _calibrating = false; return false; } /* check if the accelerometers are calibrated in 3D and that current number of accels matched number when calibrated */ bool AP_InertialSensor::accel_calibrated_ok_all() const { // calibration is not applicable for HIL mode if (_hil_mode) return true; // check each accelerometer has offsets saved for (uint8_t i=0; i<get_accel_count(); i++) { // exactly 0.0 offset is extremely unlikely if (_accel_offset[i].get().is_zero()) { return false; } // exactly 1.0 scaling is extremely unlikely const Vector3f &scaling = _accel_scale[i].get(); if (is_equal(scaling.x,1.0f) && is_equal(scaling.y,1.0f) && is_equal(scaling.z,1.0f)) { return false; } // zero scaling also indicates not calibrated if (_accel_scale[i].get().is_zero()) { return false; } } // check calibrated accels matches number of accels (no unused accels should have offsets or scaling) if (get_accel_count() < INS_MAX_INSTANCES) { for (uint8_t i=get_accel_count(); i<INS_MAX_INSTANCES; i++) { const Vector3f &scaling = _accel_scale[i].get(); bool have_scaling = (!is_zero(scaling.x) && !is_equal(scaling.x,1.0f)) || (!is_zero(scaling.y) && !is_equal(scaling.y,1.0f)) || (!is_zero(scaling.z) && !is_equal(scaling.z,1.0f)); bool have_offsets = !_accel_offset[i].get().is_zero(); if (have_scaling || have_offsets) { return false; } } } // if we got this far the accelerometers must have been calibrated return true; } // return true if accel instance should be used (must be healthy and have it's use parameter set to 1) bool AP_InertialSensor::use_accel(uint8_t instance) const { if (instance >= INS_MAX_INSTANCES) { return false; } return (get_accel_health(instance) && _use[instance]); } void AP_InertialSensor::_init_gyro() { uint8_t num_gyros = MIN(get_gyro_count(), INS_MAX_INSTANCES); Vector3f last_average[INS_MAX_INSTANCES], best_avg[INS_MAX_INSTANCES]; Vector3f new_gyro_offset[INS_MAX_INSTANCES]; float best_diff[INS_MAX_INSTANCES]; bool converged[INS_MAX_INSTANCES]; // exit immediately if calibration is already in progress if (_calibrating) { return; } // record we are calibrating _calibrating = true; // flash leds to tell user to keep the IMU still AP_Notify::flags.initialising = true; // cold start hal.console->print("Init Gyro"); /* we do the gyro calibration with no board rotation. This avoids having to rotate readings during the calibration */ enum Rotation saved_orientation = _board_orientation; _board_orientation = ROTATION_NONE; // remove existing gyro offsets for (uint8_t k=0; k<num_gyros; k++) { _gyro_offset[k].set(Vector3f()); new_gyro_offset[k].zero(); best_diff[k] = 0; last_average[k].zero(); converged[k] = false; } for(int8_t c = 0; c < 5; c++) { hal.scheduler->delay(5); update(); } // the strategy is to average 50 points over 0.5 seconds, then do it // again and see if the 2nd average is within a small margin of // the first uint8_t num_converged = 0; // we try to get a good calibration estimate for up to 30 seconds // if the gyros are stable, we should get it in 1 second for (int16_t j = 0; j <= 30*4 && num_converged < num_gyros; j++) { Vector3f gyro_sum[INS_MAX_INSTANCES], gyro_avg[INS_MAX_INSTANCES], gyro_diff[INS_MAX_INSTANCES]; Vector3f accel_start; float diff_norm[INS_MAX_INSTANCES]; uint8_t i; memset(diff_norm, 0, sizeof(diff_norm)); hal.console->print("*"); for (uint8_t k=0; k<num_gyros; k++) { gyro_sum[k].zero(); } accel_start = get_accel(0); for (i=0; i<50; i++) { update(); for (uint8_t k=0; k<num_gyros; k++) { gyro_sum[k] += get_gyro(k); } hal.scheduler->delay(5); } Vector3f accel_diff = get_accel(0) - accel_start; if (accel_diff.length() > 0.2f) { // the accelerometers changed during the gyro sum. Skip // this sample. This copes with doing gyro cal on a // steadily moving platform. The value 0.2 corresponds // with around 5 degrees/second of rotation. continue; } for (uint8_t k=0; k<num_gyros; k++) { gyro_avg[k] = gyro_sum[k] / i; gyro_diff[k] = last_average[k] - gyro_avg[k]; diff_norm[k] = gyro_diff[k].length(); } for (uint8_t k=0; k<num_gyros; k++) { if (j == 0) { best_diff[k] = diff_norm[k]; best_avg[k] = gyro_avg[k]; } else if (gyro_diff[k].length() < ToRad(0.1f)) { // we want the average to be within 0.1 bit, which is 0.04 degrees/s last_average[k] = (gyro_avg[k] * 0.5f) + (last_average[k] * 0.5f); if (!converged[k] || last_average[k].length() < new_gyro_offset[k].length()) { new_gyro_offset[k] = last_average[k]; } if (!converged[k]) { converged[k] = true; num_converged++; } } else if (diff_norm[k] < best_diff[k]) { best_diff[k] = diff_norm[k]; best_avg[k] = (gyro_avg[k] * 0.5f) + (last_average[k] * 0.5f); } last_average[k] = gyro_avg[k]; } } // we've kept the user waiting long enough - use the best pair we // found so far hal.console->println(); for (uint8_t k=0; k<num_gyros; k++) { if (!converged[k]) { hal.console->printf("gyro[%u] did not converge: diff=%f dps\n", (unsigned)k, (double)ToDeg(best_diff[k])); _gyro_offset[k] = best_avg[k]; // flag calibration as failed for this gyro _gyro_cal_ok[k] = false; } else { _gyro_cal_ok[k] = true; _gyro_offset[k] = new_gyro_offset[k]; } } // restore orientation _board_orientation = saved_orientation; // record calibration complete _calibrating = false; // stop flashing leds AP_Notify::flags.initialising = false; } // save parameters to eeprom void AP_InertialSensor::_save_parameters() { _product_id.save(); for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) { _accel_scale[i].save(); _accel_offset[i].save(); _gyro_offset[i].save(); } } /* update gyro and accel values from backends */ void AP_InertialSensor::update(void) { // during initialisation update() may be called without // wait_for_sample(), and a wait is implied wait_for_sample(); if (!_hil_mode) { for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) { // mark sensors unhealthy and let update() in each backend // mark them healthy via _publish_gyro() and // _publish_accel() _gyro_healthy[i] = false; _accel_healthy[i] = false; _delta_velocity_valid[i] = false; _delta_angle_valid[i] = false; } for (uint8_t i=0; i<_backend_count; i++) { _backends[i]->update(); } // clear accumulators for (uint8_t i = 0; i < INS_MAX_INSTANCES; i++) { _delta_velocity_acc[i].zero(); _delta_velocity_acc_dt[i] = 0; _delta_angle_acc[i].zero(); _delta_angle_acc_dt[i] = 0; } // adjust health status if a sensor has a non-zero error count // but another sensor doesn't. bool have_zero_accel_error_count = false; bool have_zero_gyro_error_count = false; for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) { if (_accel_healthy[i] && _accel_error_count[i] == 0) { have_zero_accel_error_count = true; } if (_gyro_healthy[i] && _gyro_error_count[i] == 0) { have_zero_gyro_error_count = true; } } for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) { if (_gyro_healthy[i] && _gyro_error_count[i] != 0 && have_zero_gyro_error_count) { // we prefer not to use a gyro that has had errors _gyro_healthy[i] = false; } if (_accel_healthy[i] && _accel_error_count[i] != 0 && have_zero_accel_error_count) { // we prefer not to use a accel that has had errors _accel_healthy[i] = false; } } // set primary to first healthy accel and gyro for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) { if (_gyro_healthy[i] && _use[i]) { _primary_gyro = i; break; } } for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) { if (_accel_healthy[i] && _use[i]) { _primary_accel = i; break; } } } _have_sample = false; } /* wait for a sample to be available. This is the function that determines the timing of the main loop in ardupilot. Ideally this function would return at exactly the rate given by the sample_rate argument given to AP_InertialSensor::init(). The key output of this function is _delta_time, which is the time over which the gyro and accel integration will happen for this sample. We want that to be a constant time if possible, but if delays occur we need to cope with them. The long term sum of _delta_time should be exactly equal to the wall clock elapsed time */ void AP_InertialSensor::wait_for_sample(void) { if (_have_sample) { // the user has called wait_for_sample() again without // consuming the sample with update() return; } uint32_t now = AP_HAL::micros(); if (_next_sample_usec == 0 && _delta_time <= 0) { // this is the first call to wait_for_sample() _last_sample_usec = now - _sample_period_usec; _next_sample_usec = now + _sample_period_usec; goto check_sample; } // see how long it is till the next sample is due if (_next_sample_usec - now <=_sample_period_usec) { // we're ahead on time, schedule next sample at expected period uint32_t wait_usec = _next_sample_usec - now; hal.scheduler->delay_microseconds_boost(wait_usec); uint32_t now2 = AP_HAL::micros(); if (now2+100 < _next_sample_usec) { timing_printf("shortsleep %u\n", (unsigned)(_next_sample_usec-now2)); } if (now2 > _next_sample_usec+400) { timing_printf("longsleep %u wait_usec=%u\n", (unsigned)(now2-_next_sample_usec), (unsigned)wait_usec); } _next_sample_usec += _sample_period_usec; } else if (now - _next_sample_usec < _sample_period_usec/8) { // we've overshot, but only by a small amount, keep on // schedule with no delay timing_printf("overshoot1 %u\n", (unsigned)(now-_next_sample_usec)); _next_sample_usec += _sample_period_usec; } else { // we've overshot by a larger amount, re-zero scheduling with // no delay timing_printf("overshoot2 %u\n", (unsigned)(now-_next_sample_usec)); _next_sample_usec = now + _sample_period_usec; } check_sample: if (!_hil_mode) { // we also wait for at least one backend to have a sample of both // accel and gyro. This normally completes immediately. bool gyro_available = false; bool accel_available = false; while (!gyro_available || !accel_available) { for (uint8_t i=0; i<_backend_count; i++) { _backends[i]->accumulate(); } for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) { gyro_available |= _new_gyro_data[i]; accel_available |= _new_accel_data[i]; } if (!gyro_available || !accel_available) { hal.scheduler->delay_microseconds(100); } } } now = AP_HAL::micros(); if (_hil_mode && _hil.delta_time > 0) { _delta_time = _hil.delta_time; _hil.delta_time = 0; } else { _delta_time = (now - _last_sample_usec) * 1.0e-6f; } _last_sample_usec = now; #if 0 { static uint64_t delta_time_sum; static uint16_t counter; if (delta_time_sum == 0) { delta_time_sum = _sample_period_usec; } delta_time_sum += _delta_time * 1.0e6f; if (counter++ == 400) { counter = 0; hal.console->printf("now=%lu _delta_time_sum=%lu diff=%ld\n", (unsigned long)now, (unsigned long)delta_time_sum, (long)(now - delta_time_sum)); } } #endif _have_sample = true; } /* get delta angles */ bool AP_InertialSensor::get_delta_angle(uint8_t i, Vector3f &delta_angle) const { if (_delta_angle_valid[i]) { delta_angle = _delta_angle[i]; return true; } else if (get_gyro_health(i)) { // provide delta angle from raw gyro, so we use the same code // at higher level delta_angle = get_gyro(i) * get_delta_time(); return true; } return false; } /* get delta velocity if available */ bool AP_InertialSensor::get_delta_velocity(uint8_t i, Vector3f &delta_velocity) const { if (_delta_velocity_valid[i]) { delta_velocity = _delta_velocity[i]; return true; } else if (get_accel_health(i)) { delta_velocity = get_accel(i) * get_delta_time(); return true; } return false; } /* return delta_time for the delta_velocity */ float AP_InertialSensor::get_delta_velocity_dt(uint8_t i) const { if (_delta_velocity_valid[i]) { return _delta_velocity_dt[i]; } return get_delta_time(); } /* return delta_time for the delta_angle */ float AP_InertialSensor::get_delta_angle_dt(uint8_t i) const { if (_delta_angle_valid[i]) { return _delta_angle_dt[i]; } return get_delta_time(); } /* support for setting accel and gyro vectors, for use by HIL */ void AP_InertialSensor::set_accel(uint8_t instance, const Vector3f &accel) { if (_accel_count == 0) { // we haven't initialised yet return; } if (instance < INS_MAX_INSTANCES) { _accel[instance] = accel; _accel_healthy[instance] = true; if (_accel_count <= instance) { _accel_count = instance+1; } if (!_accel_healthy[_primary_accel]) { _primary_accel = instance; } } } void AP_InertialSensor::set_gyro(uint8_t instance, const Vector3f &gyro) { if (_gyro_count == 0) { // we haven't initialised yet return; } if (instance < INS_MAX_INSTANCES) { _gyro[instance] = gyro; _gyro_healthy[instance] = true; if (_gyro_count <= instance) { _gyro_count = instance+1; _gyro_cal_ok[instance] = true; } if (!_accel_healthy[_primary_accel]) { _primary_accel = instance; } } } /* set delta time for next ins.update() */ void AP_InertialSensor::set_delta_time(float delta_time) { _hil.delta_time = delta_time; } /* set delta velocity for next update */ void AP_InertialSensor::set_delta_velocity(uint8_t instance, float deltavt, const Vector3f &deltav) { if (instance < INS_MAX_INSTANCES) { _delta_velocity_valid[instance] = true; _delta_velocity[instance] = deltav; _delta_velocity_dt[instance] = deltavt; } } /* set delta angle for next update */ void AP_InertialSensor::set_delta_angle(uint8_t instance, const Vector3f &deltaa) { if (instance < INS_MAX_INSTANCES) { _delta_angle_valid[instance] = true; _delta_angle[instance] = deltaa; } } /* * Get an AuxiliaryBus of N @instance of backend identified by @backend_id */ AuxiliaryBus *AP_InertialSensor::get_auxiliary_bus(int16_t backend_id, uint8_t instance) { detect_backends(); AP_InertialSensor_Backend *backend = _find_backend(backend_id, instance); if (backend == NULL) return NULL; return backend->get_auxiliary_bus(); } // calculate vibration levels and check for accelerometer clipping (called by a backends) void AP_InertialSensor::calc_vibration_and_clipping(uint8_t instance, const Vector3f &accel, float dt) { // check for clipping if (fabsf(accel.x) > AP_INERTIAL_SENSOR_ACCEL_CLIP_THRESH_MSS || fabsf(accel.y) > AP_INERTIAL_SENSOR_ACCEL_CLIP_THRESH_MSS || fabsf(accel.z) > AP_INERTIAL_SENSOR_ACCEL_CLIP_THRESH_MSS) { _accel_clip_count[instance]++; } // calculate vibration levels if (instance < INS_VIBRATION_CHECK_INSTANCES) { // filter accel at 5hz Vector3f accel_filt = _accel_vibe_floor_filter[instance].apply(accel, dt); // calc difference from this sample and 5hz filtered value, square and filter at 2hz Vector3f accel_diff = (accel - accel_filt); accel_diff.x *= accel_diff.x; accel_diff.y *= accel_diff.y; accel_diff.z *= accel_diff.z; _accel_vibe_filter[instance].apply(accel_diff, dt); } } // peak hold detector for slower mechanisms to detect spikes void AP_InertialSensor::set_accel_peak_hold(uint8_t instance, const Vector3f &accel) { if (instance != _primary_accel) { // we only record for primary accel return; } uint32_t now = AP_HAL::millis(); // negative x peak(min) hold detector if (accel.x < _peak_hold_state.accel_peak_hold_neg_x || _peak_hold_state.accel_peak_hold_neg_x_age <= now) { _peak_hold_state.accel_peak_hold_neg_x = accel.x; _peak_hold_state.accel_peak_hold_neg_x_age = now + AP_INERTIAL_SENSOR_ACCEL_PEAK_DETECT_TIMEOUT_MS; } } // retrieve latest calculated vibration levels Vector3f AP_InertialSensor::get_vibration_levels(uint8_t instance) const { Vector3f vibe; if (instance < INS_VIBRATION_CHECK_INSTANCES) { vibe = _accel_vibe_filter[instance].get(); vibe.x = safe_sqrt(vibe.x); vibe.y = safe_sqrt(vibe.y); vibe.z = safe_sqrt(vibe.z); } return vibe; } // check for vibration movement. Return true if all axis show nearly zero movement bool AP_InertialSensor::is_still() { Vector3f vibe = get_vibration_levels(); return (vibe.x < _still_threshold) && (vibe.y < _still_threshold) && (vibe.z < _still_threshold); } // initialise and register accel calibrator // called during the startup of accel cal void AP_InertialSensor::acal_init() { // NOTE: these objects are never deallocated because the pre-arm checks force a reboot if (_acal == NULL) { _acal = new AP_AccelCal; } if (_accel_calibrator == NULL) { _accel_calibrator = new AccelCalibrator[INS_MAX_INSTANCES]; } } // update accel calibrator void AP_InertialSensor::acal_update() { if(_acal == NULL) { return; } _acal->update(); if (hal.util->get_soft_armed() && _acal->get_status() != ACCEL_CAL_NOT_STARTED) { _acal->cancel(); } } /* set and save accelerometer bias along with trim calculation */ void AP_InertialSensor::_acal_save_calibrations() { Vector3f bias, gain; for (uint8_t i=0; i<_accel_count; i++) { if (_accel_calibrator[i].get_status() == ACCEL_CAL_SUCCESS) { _accel_calibrator[i].get_calibration(bias, gain); _accel_offset[i].set_and_save(bias); _accel_scale[i].set_and_save(gain); } else { _accel_offset[i].set_and_save(Vector3f(0,0,0)); _accel_scale[i].set_and_save(Vector3f(0,0,0)); } } Vector3f aligned_sample; Vector3f misaligned_sample; switch(_trim_option) { case 0: break; case 1: // The first level step of accel cal will be taken as gnd truth, // i.e. trim will be set as per the output of primary accel from the level step get_primary_accel_cal_sample_avg(0,aligned_sample); _trim_pitch = atan2f(aligned_sample.x, pythagorous2(aligned_sample.y, aligned_sample.z)); _trim_roll = atan2f(-aligned_sample.y, -aligned_sample.z); _new_trim = true; break; case 2: // Reference accel is truth, in this scenario there is a reference accel // as mentioned in ACC_BODY_ALIGNED if (get_primary_accel_cal_sample_avg(0,misaligned_sample) && get_fixed_mount_accel_cal_sample(0,aligned_sample)) { // determine trim from aligned sample vs misaligned sample Vector3f cross = (misaligned_sample%aligned_sample); float dot = (misaligned_sample*aligned_sample); Quaternion q(safe_sqrt(sq(misaligned_sample.length())*sq(aligned_sample.length()))+dot, cross.x, cross.y, cross.z); q.normalize(); _trim_roll = q.get_euler_roll(); _trim_pitch = q.get_euler_pitch(); _new_trim = true; } break; default: _new_trim = false; /* no break */ } if (fabsf(_trim_roll) > radians(10) || fabsf(_trim_pitch) > radians(10)) { hal.console->print("ERR: Trim over maximum of 10 degrees!!"); _new_trim = false; //we have either got faulty level during acal or highly misaligned accelerometers } _accel_cal_requires_reboot = true; } void AP_InertialSensor::_acal_event_failure() { for (uint8_t i=0; i<_accel_count; i++) { _accel_offset[i].set_and_save(Vector3f(0,0,0)); _accel_scale[i].set_and_save(Vector3f(0,0,0)); } } /* Returns true if new valid trim values are available and passes them to reference vars */ bool AP_InertialSensor::get_new_trim(float& trim_roll, float &trim_pitch) { if (_new_trim) { trim_roll = _trim_roll; trim_pitch = _trim_pitch; _new_trim = false; return true; } return false; } /* Returns body fixed accelerometer level data averaged during accel calibration's first step */ bool AP_InertialSensor::get_fixed_mount_accel_cal_sample(uint8_t sample_num, Vector3f& ret) const { if (_accel_count <= (_acc_body_aligned-1) || _accel_calibrator[2].get_status() != ACCEL_CAL_SUCCESS || sample_num>=_accel_calibrator[2].get_num_samples_collected()) { return false; } _accel_calibrator[_acc_body_aligned-1].get_sample_corrected(sample_num, ret); ret.rotate(_board_orientation); return true; } /* Returns Primary accelerometer level data averaged during accel calibration's first step */ bool AP_InertialSensor::get_primary_accel_cal_sample_avg(uint8_t sample_num, Vector3f& ret) const { uint8_t count = 0; Vector3f avg = Vector3f(0,0,0); for(uint8_t i=0; i<MIN(_accel_count,2); i++) { if (_accel_calibrator[i].get_status() != ACCEL_CAL_SUCCESS || sample_num>=_accel_calibrator[i].get_num_samples_collected()) { continue; } Vector3f sample; _accel_calibrator[i].get_sample_corrected(sample_num, sample); avg += sample; count++; } if(count == 0) { return false; } avg /= count; ret = avg; ret.rotate(_board_orientation); return true; }