/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Sub.h" /* * flight.pde - high level calls to set and update flight modes * logic for individual flight modes is in control_acro.pde, control_stabilize.pde, etc */ // set_mode - change flight mode and perform any necessary initialisation // optional force parameter used to force the flight mode change (used only first time mode is set) // returns true if mode was succesfully set // ACRO, STABILIZE, ALTHOLD, LAND, DRIFT and SPORT can always be set successfully but the return state of other flight modes should be checked and the caller should deal with failures appropriately bool Sub::set_mode(control_mode_t mode, mode_reason_t reason) { // boolean to record if flight mode could be set bool success = false; bool ignore_checks = !motors.armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform // return immediately if we are already in the desired mode if (mode == control_mode) { prev_control_mode = control_mode; prev_control_mode_reason = control_mode_reason; control_mode_reason = reason; return true; } switch(mode) { case ACRO: success = acro_init(ignore_checks); break; case STABILIZE: success = stabilize_init(ignore_checks); break; case ALT_HOLD: success = althold_init(ignore_checks); break; case AUTO: success = auto_init(ignore_checks); break; case CIRCLE: success = circle_init(ignore_checks); break; case VELHOLD: success = velhold_init(ignore_checks); break; case GUIDED: success = guided_init(ignore_checks); break; case SURFACE: success = surface_init(ignore_checks); break; case RTL: success = rtl_init(ignore_checks); break; case DRIFT: success = drift_init(ignore_checks); break; #if TRANSECT_ENABLED == ENABLED case TRANSECT: success = transect_init(ignore_checks); break; #endif case FLIP: success = flip_init(ignore_checks); break; #if AUTOTUNE_ENABLED == ENABLED case AUTOTUNE: success = autotune_init(ignore_checks); break; #endif #if POSHOLD_ENABLED == ENABLED case POSHOLD: success = poshold_init(ignore_checks); break; #endif case BRAKE: success = brake_init(ignore_checks); break; case THROW: success = throw_init(ignore_checks); break; case MANUAL: success = manual_init(ignore_checks); break; default: success = false; break; } // update flight mode if (success) { // perform any cleanup required by previous flight mode exit_mode(control_mode, mode); prev_control_mode = control_mode; prev_control_mode_reason = control_mode_reason; control_mode = mode; control_mode_reason = reason; DataFlash.Log_Write_Mode(control_mode, control_mode_reason); #if AC_FENCE == ENABLED // pilot requested flight mode change during a fence breach indicates pilot is attempting to manually recover // this flight mode change could be automatic (i.e. fence, battery, GPS or GCS failsafe) // but it should be harmless to disable the fence temporarily in these situations as well fence.manual_recovery_start(); #endif }else{ // Log error that we failed to enter desired flight mode Log_Write_Error(ERROR_SUBSYSTEM_FLIGHT_MODE,mode); } // update notify object if (success) { notify_flight_mode(control_mode); } // return success or failure return success; } // update_flight_mode - calls the appropriate attitude controllers based on flight mode // called at 100hz or more void Sub::update_flight_mode() { // Update EKF speed limit - used to limit speed when we are using optical flow ahrs.getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler); switch (control_mode) { case ACRO: acro_run(); break; case STABILIZE: stabilize_run(); break; case ALT_HOLD: althold_run(); break; case AUTO: auto_run(); break; case CIRCLE: circle_run(); break; case VELHOLD: velhold_run(); break; case GUIDED: guided_run(); break; case SURFACE: surface_run(); break; case RTL: rtl_run(); break; case DRIFT: drift_run(); break; #if TRANSECT_ENABLED == ENABLED case TRANSECT: transect_run(); break; #endif case FLIP: flip_run(); break; #if AUTOTUNE_ENABLED == ENABLED case AUTOTUNE: autotune_run(); break; #endif #if POSHOLD_ENABLED == ENABLED case POSHOLD: poshold_run(); break; #endif case BRAKE: brake_run(); break; case THROW: throw_run(); break; case MANUAL: manual_run(); break; default: break; } } // exit_mode - high level call to organise cleanup as a flight mode is exited void Sub::exit_mode(control_mode_t old_control_mode, control_mode_t new_control_mode) { #if AUTOTUNE_ENABLED == ENABLED if (old_control_mode == AUTOTUNE) { autotune_stop(); } #endif // stop mission when we leave auto mode if (old_control_mode == AUTO) { if (mission.state() == AP_Mission::MISSION_RUNNING) { mission.stop(); } #if MOUNT == ENABLED camera_mount.set_mode_to_default(); #endif // MOUNT == ENABLED } if (old_control_mode == THROW) { throw_exit(); } // smooth throttle transition when switching from manual to automatic flight modes if (mode_has_manual_throttle(old_control_mode) && !mode_has_manual_throttle(new_control_mode) && motors.armed() && !ap.land_complete) { // this assumes all manual flight modes use get_pilot_desired_throttle to translate pilot input to output throttle set_accel_throttle_I_from_pilot_throttle(get_pilot_desired_throttle(channel_throttle->control_in)); } // cancel any takeoffs in progress takeoff_stop(); } // returns true or false whether mode requires GPS bool Sub::mode_requires_GPS(control_mode_t mode) { switch(mode) { case AUTO: case GUIDED: case VELHOLD: case RTL: case CIRCLE: case DRIFT: case POSHOLD: case BRAKE: case THROW: case TRANSECT: return true; default: return false; } return false; } // mode_has_manual_throttle - returns true if the flight mode has a manual throttle (i.e. pilot directly controls throttle) bool Sub::mode_has_manual_throttle(control_mode_t mode) { switch(mode) { case ACRO: case STABILIZE: case MANUAL: return true; default: return false; } return false; } // mode_allows_arming - returns true if vehicle can be armed in the specified mode // arming_from_gcs should be set to true if the arming request comes from the ground station bool Sub::mode_allows_arming(control_mode_t mode, bool arming_from_gcs) { if (mode_has_manual_throttle(mode) || mode == VELHOLD || mode == ALT_HOLD || mode == POSHOLD || mode == DRIFT || mode == TRANSECT || mode == THROW || (arming_from_gcs && mode == GUIDED)) { return true; } return false; } // notify_flight_mode - sets notify object based on flight mode. Only used for OreoLED notify device void Sub::notify_flight_mode(control_mode_t mode) { switch(mode) { case AUTO: case GUIDED: case RTL: case CIRCLE: case SURFACE: // autopilot modes AP_Notify::flags.autopilot_mode = true; break; default: // all other are manual flight modes AP_Notify::flags.autopilot_mode = false; break; } } // // print_flight_mode - prints flight mode to serial port. // void Sub::print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode) { switch (mode) { case STABILIZE: port->print("STABILIZE"); break; case ACRO: port->print("ACRO"); break; case ALT_HOLD: port->print("ALT_HOLD"); break; case AUTO: port->print("AUTO"); break; case GUIDED: port->print("GUIDED"); break; case VELHOLD: port->print("VELHOLD"); break; case RTL: port->print("RTL"); break; case CIRCLE: port->print("CIRCLE"); break; case SURFACE: port->print("SURFACE"); break; case OF_LOITER: port->print("OF_LOITER"); break; case DRIFT: port->print("DRIFT"); break; case TRANSECT: port->print("TRANSECT"); break; case FLIP: port->print("FLIP"); break; case AUTOTUNE: port->print("AUTOTUNE"); break; case POSHOLD: port->print("POSHOLD"); break; case BRAKE: port->print("BRAKE"); break; case THROW: port->print("THROW"); break; case MANUAL: port->print("MANUAL"); break; default: port->printf("Mode(%u)", (unsigned)mode); break; } }