/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * control_hybrid.pde - init and run calls for hybrid flight mode * hybrid tries to improve upon regular loiter by mixing the pilot input with the loiter controller */ #define HYBRID_SPEED_0 10 // speed below which it is always safe to switch to loiter #if MAIN_LOOP_RATE == 100 // definitions for 100hz loop update rate # define HYBRID_BRAKE_TIME_ESTIMATE_MAX 600 // max number of cycles the brake will be applied before we switch to loiter # define HYBRID_BRAKE_TO_LOITER_TIMER 150 // Number of cycles to transition from brake mode to loiter mode. Must be lower than HYBRID_LOITER_STAB_TIMER # define HYBRID_LOITER_TO_PILOT_MIX_TIMER 50 // Set it from 100 to 200, the number of centiseconds loiter and manual commands are mixed to make a smooth transition. # define HYBRID_SMOOTH_RATE_FACTOR 0.04f // filter applied to pilot's roll/pitch input as it returns to center. A lower number will cause the roll/pitch to return to zero more slowly if the brake_rate is also low. # define HYBRID_WIND_COMP_TIMER_10HZ 10 // counter value used to reduce wind compensation to 10hz #else // definitions for 400hz loop update rate # define HYBRID_BRAKE_TIME_ESTIMATE_MAX (600*4) // max number of cycles the brake will be applied before we switch to loiter # define HYBRID_BRAKE_TO_LOITER_TIMER (150*4) // Number of cycles to transition from brake mode to loiter mode. Must be lower than HYBRID_LOITER_STAB_TIMER # define HYBRID_LOITER_TO_PILOT_MIX_TIMER (50*4) // Set it from 100 to 200, the number of centiseconds loiter and manual commands are mixed to make a smooth transition. # define HYBRID_SMOOTH_RATE_FACTOR 0.01f // filter applied to pilot's roll/pitch input as it returns to center. A lower number will cause the roll/pitch to return to zero more slowly if the brake_rate is also low. # define HYBRID_WIND_COMP_TIMER_10HZ 40 // counter value used to reduce wind compensation to 10hz #endif // definitions that are independent of main loop rate #define HYBRID_STICK_RELEASE_SMOOTH_ANGLE 1800 // max angle required (in centi-degrees) after which the smooth stick release effect is applied #define HYBRID_WIND_COMP_START_TIMER 15 // delay (in 10zh increments) to start of wind compensation after loiter is engaged #define HYBRID_WIND_COMP_ESTIMATE_SPEED_MAX 30 // wind compensation estimates will only run when velocity is at or below this speed in cm/s // declare some function to keep compiler happy static void hybrid_update_pilot_lean_angle(int16_t &lean_angle_filtered, int16_t &lean_angle_raw); static int16_t hybrid_mix_controls(float mix_ratio, int16_t first_control, int16_t second_control); static void hybrid_update_brake_angle_from_velocity(int16_t &brake_angle, float velocity); static void hybrid_update_wind_comp_estimate(); static void hybrid_get_wind_comp_lean_angles(int16_t &roll_angle, int16_t &pitch_angle); // mission state enumeration enum hybrid_rp_mode { HYBRID_PILOT_OVERRIDE=0, // pilot is controlling this axis (i.e. roll or pitch) HYBRID_BRAKE, // this axis is braking towards zero HYBRID_BRAKE_READY_TO_LOITER, // this axis has completed braking and is ready to enter loiter mode (both modes must be this value before moving to next stage) HYBRID_BRAKE_TO_LOITER, // both vehicle's axis (roll and pitch) are transitioning from braking to loiter mode (braking and loiter controls are mixed) HYBRID_LOITER, // both vehicle axis are holding position HYBRID_LOITER_TO_PILOT_OVERRIDE // pilot has input controls on this axis and this axis is transitioning to pilot override (other axis will transition to brake if no pilot input) }; static struct { hybrid_rp_mode roll_mode : 3; // roll mode: pilot override, brake or loiter hybrid_rp_mode pitch_mode : 3; // pitch mode: pilot override, brake or loiter uint8_t braking_time_updated_roll : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking uint8_t braking_time_updated_pitch : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking // pilot input related variables int16_t pilot_roll; // pilot requested roll angle (filtered to slow returns to zero) int16_t pilot_pitch; // pilot requested roll angle (filtered to slow returns to zero) // braking related variables float brake_gain; // gain used during conversion of vehicle's velocity to lean angle during braking (calculated from brake_rate) int16_t brake_roll; // target roll angle during braking periods int16_t brake_pitch; // target pitch angle during braking periods int16_t brake_timeout_roll; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking int16_t brake_timeout_pitch; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking int16_t brake_angle_max_roll; // maximum lean angle achieved during braking. Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time int16_t brake_angle_max_pitch; // maximum lean angle achieved during braking Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time int16_t brake_to_loiter_timer; // cycles to mix brake and loiter controls in HYBRID_BRAKE_TO_LOITER // loiter related variables int16_t loiter_to_pilot_timer_roll; // cycles to mix loiter and pilot controls in HYBRID_LOITER_TO_PILOT int16_t loiter_to_pilot_timer_pitch; // cycles to mix loiter and pilot controls in HYBRID_LOITER_TO_PILOT int16_t loiter_final_roll; // final roll angle from loiter controller as we exit loiter mode (used for mixing with pilot input) int16_t loiter_final_pitch; // final pitch angle from loiter controller as we exit loiter mode (used for mixing with pilot input) // wind compensation related variables Vector2f wind_comp_ef; // wind compensation in earth frame, filtered lean angles from position controller int16_t wind_comp_roll; // roll angle to compensate for wind int16_t wind_comp_pitch; // pitch angle to compensate for wind int8_t wind_comp_start_timer; // counter to delay start of wind compensation for a short time after loiter is engaged int8_t wind_comp_timer; // counter to reduce wind_offset calcs to 10hz // final output int16_t roll; // final roll angle sent to attitude controller int16_t pitch; // final pitch angle sent to attitude controller } hybrid; // hybrid_init - initialise hybrid controller static bool hybrid_init(bool ignore_checks) { // fail to initialise hybrid mode if no GPS lock if (!GPS_ok() && !ignore_checks) { return false; } // set target to current position wp_nav.init_loiter_target(); // clear pilot's feed forward for roll and pitch wp_nav.set_pilot_desired_acceleration(0, 0); // initialise altitude target to stopping point pos_control.set_target_to_stopping_point_z(); // initialise lean angles to current attitude hybrid.pilot_roll = 0; hybrid.pilot_pitch = 0; hybrid.roll = constrain_int16(ahrs.roll_sensor, -g.hybrid_brake_angle_max, g.hybrid_brake_angle_max); hybrid.pitch = constrain_int16(ahrs.pitch_sensor, -g.hybrid_brake_angle_max, g.hybrid_brake_angle_max); // compute brake_gain hybrid.brake_gain = (15.0f * (float)g.hybrid_brake_rate + 95.0f) / 100.0f; if (ap.land_complete) { // if landed begin in loiter mode hybrid.roll_mode = HYBRID_LOITER; hybrid.pitch_mode = HYBRID_LOITER; }else{ // if not landed start in pilot override to avoid hard twitch hybrid.roll_mode = HYBRID_PILOT_OVERRIDE; hybrid.pitch_mode = HYBRID_PILOT_OVERRIDE; } // initialise wind_comp each time hybrid is switched on hybrid.wind_comp_ef.zero(); hybrid.wind_comp_roll = 0; hybrid.wind_comp_pitch = 0; hybrid.wind_comp_timer = 0; return true; } // hybrid_run - runs the hybrid controller // should be called at 100hz or more static void hybrid_run() { int16_t target_roll, target_pitch; // pilot's roll and pitch angle inputs float target_yaw_rate = 0; // pilot desired yaw rate in centi-degrees/sec float target_climb_rate = 0; // pilot desired climb rate in centimeters/sec float brake_to_loiter_mix; // mix of brake and loiter controls. 0 = fully brake controls, 1 = fully loiter controls float loiter_to_pilot_mix; // mix of loiter and pilot controls. 0 = fully loiter controls, 1 = fully pilot controls float vel_fw, vel_right; // vehicle's current velocity in body-frame forward and right directions const Vector3f& vel = inertial_nav.get_velocity(); // if not auto armed set throttle to zero and exit immediately if(!ap.auto_armed || !inertial_nav.position_ok()) { wp_nav.init_loiter_target(); attitude_control.init_targets(); attitude_control.set_throttle_out(0, false); return; } // process pilot inputs if (!failsafe.radio) { // apply SIMPLE mode transform to pilot inputs update_simple_mode(); // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in); // get pilot desired climb rate (for alt-hold mode and take-off) target_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in); // check for pilot requested take-off if (ap.land_complete && target_climb_rate > 0) { // indicate we are taking off set_land_complete(false); // clear i term when we're taking off set_throttle_takeoff(); } } // if landed initialise loiter targets, set throttle to zero and exit if (ap.land_complete) { wp_nav.init_loiter_target(); attitude_control.init_targets(); attitude_control.set_throttle_out(0, false); return; }else{ // convert pilot input to lean angles get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, target_roll, target_pitch); // convert inertial nav earth-frame velocities to body-frame // To-Do: move this to AP_Math (or perhaps we already have a function to do this) vel_fw = vel.x*ahrs.cos_yaw() + vel.y*ahrs.sin_yaw(); vel_right = -vel.x*ahrs.sin_yaw() + vel.y*ahrs.cos_yaw(); // Roll state machine // Each state (aka mode) is responsible for: // 1. dealing with pilot input // 2. calculating the final roll output to the attitude controller // 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state switch (hybrid.roll_mode) { case HYBRID_PILOT_OVERRIDE: // update pilot desired roll angle using latest radio input // this filters the input so that it returns to zero no faster than the brake-rate hybrid_update_pilot_lean_angle(hybrid.pilot_roll, target_roll); // switch to BRAKE mode for next iteration if no pilot input if ((target_roll == 0) && (abs(hybrid.pilot_roll) < 2 * g.hybrid_brake_rate)) { // initialise BRAKE mode hybrid.roll_mode = HYBRID_BRAKE; // Set brake roll mode hybrid.brake_roll = 0; // initialise braking angle to zero hybrid.brake_angle_max_roll = 0; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking hybrid.brake_timeout_roll = HYBRID_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode. hybrid.braking_time_updated_roll = false; // flag the braking time can be re-estimated } // final lean angle should be pilot input plus wind compensation hybrid.roll = hybrid.pilot_roll + hybrid.wind_comp_roll; break; case HYBRID_BRAKE: case HYBRID_BRAKE_READY_TO_LOITER: // calculate brake_roll angle to counter-act velocity hybrid_update_brake_angle_from_velocity(hybrid.brake_roll, vel_right); // update braking time estimate if (!hybrid.braking_time_updated_roll) { // check if brake angle is increasing if (abs(hybrid.brake_roll) >= hybrid.brake_angle_max_roll) { hybrid.brake_angle_max_roll = abs(hybrid.brake_roll); } else { // braking angle has started decreasing so re-estimate braking time hybrid.brake_timeout_roll = 1+(uint16_t)(15L*(int32_t)(abs(hybrid.brake_roll))/(10L*(int32_t)g.hybrid_brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time. hybrid.braking_time_updated_roll = true; } } // if velocity is very low reduce braking time to 0.5seconds if ((fabs(vel_right) <= HYBRID_SPEED_0) && (hybrid.brake_timeout_roll > 50)) { hybrid.brake_timeout_roll = 50; } // reduce braking timer if (hybrid.brake_timeout_roll > 0) { hybrid.brake_timeout_roll--; } else { // indicate that we are ready to move to Loiter. // Loiter will only actually be engaged once both roll_mode and pitch_mode are changed to HYBRID_BRAKE_READY_TO_LOITER // logic for engaging loiter is handled below the roll and pitch mode switch statements hybrid.roll_mode = HYBRID_BRAKE_READY_TO_LOITER; } // check for pilot input if (target_roll != 0) { hybrid.roll_mode = HYBRID_PILOT_OVERRIDE; } // final lean angle is braking angle + wind compensation angle hybrid.roll = hybrid.brake_roll + hybrid.wind_comp_roll; break; case HYBRID_BRAKE_TO_LOITER: case HYBRID_LOITER: // these modes are combined roll-pitch modes and are handled below break; case HYBRID_LOITER_TO_PILOT_OVERRIDE: // update pilot desired roll angle using latest radio input // this filters the input so that it returns to zero no faster than the brake-rate hybrid_update_pilot_lean_angle(hybrid.pilot_roll, target_roll); // count-down loiter to pilot timer if (hybrid.loiter_to_pilot_timer_roll > 0) { hybrid.loiter_to_pilot_timer_roll--; } else { // when timer runs out switch to full pilot override for next iteration hybrid.roll_mode = HYBRID_PILOT_OVERRIDE; } // calculate loiter_to_pilot mix ratio loiter_to_pilot_mix = (float)hybrid.loiter_to_pilot_timer_roll / (float)HYBRID_LOITER_TO_PILOT_MIX_TIMER; // mix final loiter lean angle and pilot desired lean angles hybrid.roll = hybrid_mix_controls(loiter_to_pilot_mix, hybrid.loiter_final_roll, hybrid.pilot_roll + hybrid.wind_comp_roll); break; } // Pitch state machine // Each state (aka mode) is responsible for: // 1. dealing with pilot input // 2. calculating the final pitch output to the attitude contpitcher // 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state switch (hybrid.pitch_mode) { case HYBRID_PILOT_OVERRIDE: // update pilot desired pitch angle using latest radio input // this filters the input so that it returns to zero no faster than the brake-rate hybrid_update_pilot_lean_angle(hybrid.pilot_pitch, target_pitch); // switch to BRAKE mode for next iteration if no pilot input if ((target_pitch == 0) && (abs(hybrid.pilot_pitch) < 2 * g.hybrid_brake_rate)) { // initialise BRAKE mode hybrid.pitch_mode = HYBRID_BRAKE; // set brake pitch mode hybrid.brake_pitch = 0; // initialise braking angle to zero hybrid.brake_angle_max_pitch = 0; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking hybrid.brake_timeout_pitch = HYBRID_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode. hybrid.braking_time_updated_pitch = false; // flag the braking time can be re-estimated } // final lean angle should be pilot input plus wind compensation hybrid.pitch = hybrid.pilot_pitch + hybrid.wind_comp_pitch; break; case HYBRID_BRAKE: case HYBRID_BRAKE_READY_TO_LOITER: // calculate brake_pitch angle to counter-act velocity hybrid_update_brake_angle_from_velocity(hybrid.brake_pitch, -vel_fw); // update braking time estimate if (!hybrid.braking_time_updated_pitch) { // check if brake angle is increasing if (abs(hybrid.brake_pitch) >= hybrid.brake_angle_max_pitch) { hybrid.brake_angle_max_pitch = abs(hybrid.brake_pitch); } else { // braking angle has started decreasing so re-estimate braking time hybrid.brake_timeout_pitch = 1+(uint16_t)(15L*(int32_t)(abs(hybrid.brake_pitch))/(10L*(int32_t)g.hybrid_brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time. hybrid.braking_time_updated_pitch = true; } } // if velocity is very low reduce braking time to 0.5seconds // Note: this speed is extremely low (only 10cm/s) meaning this case is likely never executed if ((fabs(vel_right) <= HYBRID_SPEED_0) && (hybrid.brake_timeout_pitch > 50)) { hybrid.brake_timeout_pitch = 50; } // reduce braking timer if (hybrid.brake_timeout_pitch > 0) { hybrid.brake_timeout_pitch--; } else { // indicate that we are ready to move to Loiter. // Loiter will only actually be engaged once both pitch_mode and pitch_mode are changed to HYBRID_BRAKE_READY_TO_LOITER // logic for engaging loiter is handled below the pitch and pitch mode switch statements hybrid.pitch_mode = HYBRID_BRAKE_READY_TO_LOITER; } // check for pilot input if (target_pitch != 0) { hybrid.pitch_mode = HYBRID_PILOT_OVERRIDE; } // final lean angle is braking angle + wind compensation angle hybrid.pitch = hybrid.brake_pitch + hybrid.wind_comp_pitch; break; case HYBRID_BRAKE_TO_LOITER: case HYBRID_LOITER: // these modes are combined pitch-pitch modes and are handled below break; case HYBRID_LOITER_TO_PILOT_OVERRIDE: // update pilot desired pitch angle using latest radio input // this filters the input so that it returns to zero no faster than the brake-rate hybrid_update_pilot_lean_angle(hybrid.pilot_pitch, target_pitch); // count-down loiter to pilot timer if (hybrid.loiter_to_pilot_timer_pitch > 0) { hybrid.loiter_to_pilot_timer_pitch--; } else { // when timer runs out switch to full pilot override for next iteration hybrid.pitch_mode = HYBRID_PILOT_OVERRIDE; } // calculate loiter_to_pilot mix ratio loiter_to_pilot_mix = (float)hybrid.loiter_to_pilot_timer_pitch / (float)HYBRID_LOITER_TO_PILOT_MIX_TIMER; // mix final loiter lean angle and pilot desired lean angles hybrid.pitch = hybrid_mix_controls(loiter_to_pilot_mix, hybrid.loiter_final_pitch, hybrid.pilot_pitch + hybrid.wind_comp_pitch); break; } // // Shared roll & pitch states (HYBRID_BRAKE_TO_LOITER and HYBRID_LOITER) // // switch into LOITER mode when both roll and pitch are ready if (hybrid.roll_mode == HYBRID_BRAKE_READY_TO_LOITER && hybrid.pitch_mode == HYBRID_BRAKE_READY_TO_LOITER) { hybrid.roll_mode = HYBRID_BRAKE_TO_LOITER; hybrid.pitch_mode = HYBRID_BRAKE_TO_LOITER; hybrid.brake_to_loiter_timer = HYBRID_BRAKE_TO_LOITER_TIMER; // init loiter controller wp_nav.init_loiter_target(); // move wind compensation back into loiter I term g.pid_loiter_rate_lat.set_integrator(hybrid.wind_comp_ef.x); g.pid_loiter_rate_lon.set_integrator(hybrid.wind_comp_ef.y); // set delay to start of wind compensation estimate updates hybrid.wind_comp_start_timer = HYBRID_WIND_COMP_START_TIMER; } // roll-mode is used as the combined roll+pitch mode when in BRAKE_TO_LOITER or LOITER modes if (hybrid.roll_mode == HYBRID_BRAKE_TO_LOITER || hybrid.roll_mode == HYBRID_LOITER) { // force pitch mode to be same as roll_mode just to keep it consistent (it's not actually used in these states) hybrid.pitch_mode = hybrid.roll_mode; // handle combined roll+pitch mode switch (hybrid.roll_mode) { case HYBRID_BRAKE_TO_LOITER: // reduce brake_to_loiter timer if (hybrid.brake_to_loiter_timer > 0) { hybrid.brake_to_loiter_timer--; } else { // progress to full loiter on next iteration hybrid.roll_mode = HYBRID_LOITER; hybrid.pitch_mode = HYBRID_LOITER; } // calculate percentage mix of loiter and brake control brake_to_loiter_mix = (float)hybrid.brake_to_loiter_timer / (float)HYBRID_BRAKE_TO_LOITER_TIMER; // calculate brake_roll and pitch angles to counter-act velocity hybrid_update_brake_angle_from_velocity(hybrid.brake_roll, vel_right); hybrid_update_brake_angle_from_velocity(hybrid.brake_pitch, -vel_fw); // run loiter controller wp_nav.update_loiter(); // calculate final roll and pitch output by mixing loiter and brake controls hybrid.roll = hybrid_mix_controls(brake_to_loiter_mix, hybrid.brake_roll + hybrid.wind_comp_roll, wp_nav.get_roll()); hybrid.pitch = hybrid_mix_controls(brake_to_loiter_mix, hybrid.brake_pitch + hybrid.wind_comp_pitch, wp_nav.get_pitch()); // check for pilot input if (target_roll != 0 || target_pitch != 0) { // if roll input switch to pilot override for roll if (target_roll != 0) { hybrid.roll_mode = HYBRID_PILOT_OVERRIDE; // switch pitch-mode to brake (but ready to go back to loiter anytime) hybrid.pitch_mode = HYBRID_BRAKE_READY_TO_LOITER; } // if pitch input switch to pilot override for pitch if (target_pitch != 0) { hybrid.pitch_mode = HYBRID_PILOT_OVERRIDE; if (target_roll == 0) { // switch roll-mode to brake (but ready to go back to loiter anytime) hybrid.roll_mode = HYBRID_BRAKE_READY_TO_LOITER; } } } break; case HYBRID_LOITER: // run loiter controller wp_nav.update_loiter(); // set roll angle based on loiter controller outputs hybrid.roll = wp_nav.get_roll(); hybrid.pitch = wp_nav.get_pitch(); // update wind compensation estimate hybrid_update_wind_comp_estimate(); // check for pilot input if (target_roll != 0 || target_pitch != 0) { // if roll input switch to pilot override for roll if (target_roll != 0) { hybrid.roll_mode = HYBRID_LOITER_TO_PILOT_OVERRIDE; hybrid.loiter_to_pilot_timer_roll = HYBRID_LOITER_TO_PILOT_MIX_TIMER; // initialise pilot_roll hybrid.pilot_roll = target_roll; // switch pitch-mode to brake (but ready to go back to loiter anytime) hybrid.pitch_mode = HYBRID_BRAKE_READY_TO_LOITER; } // if pitch input switch to pilot override for pitch if (target_pitch != 0) { hybrid.pitch_mode = HYBRID_LOITER_TO_PILOT_OVERRIDE; hybrid.loiter_to_pilot_timer_pitch = HYBRID_LOITER_TO_PILOT_MIX_TIMER; // initialise pilot_pitch hybrid.pilot_pitch = target_pitch; // if roll not overriden switch roll-mode to brake (but be ready to go back to loiter any time) if (target_roll == 0) { hybrid.roll_mode = HYBRID_BRAKE_READY_TO_LOITER; } } // store final loiter outputs for mixing with pilot input hybrid.loiter_final_roll = wp_nav.get_roll(); hybrid.loiter_final_pitch = wp_nav.get_pitch(); // retrieve latest wind compensation lean angles hybrid_get_wind_comp_lean_angles(hybrid.wind_comp_roll, hybrid.wind_comp_pitch); } break; default: // do nothing for uncombined roll and pitch modes break; } } // constrain target pitch/roll angles hybrid.roll = constrain_int16(hybrid.roll, -aparm.angle_max, aparm.angle_max); hybrid.pitch = constrain_int16(hybrid.pitch, -aparm.angle_max, aparm.angle_max); // update attitude controller targets attitude_control.angle_ef_roll_pitch_rate_ef_yaw(hybrid.roll, hybrid.pitch, target_yaw_rate); // throttle control if (sonar_alt_health >= SONAR_ALT_HEALTH_MAX) { // if sonar is ok, use surface tracking target_climb_rate = get_throttle_surface_tracking(target_climb_rate, pos_control.get_alt_target(), G_Dt); } // update altitude target and call position controller pos_control.set_alt_target_from_climb_rate(target_climb_rate, G_Dt); pos_control.update_z_controller(); } } // hybrid_update_pilot_lean_angle - update the pilot's filtered lean angle with the latest raw input received static void hybrid_update_pilot_lean_angle(int16_t &lean_angle_filtered, int16_t &lean_angle_raw) { // if raw input is large or reversing the vehicle's lean angle immediately set the fitlered angle to the new raw angle if ((lean_angle_filtered > 0 && lean_angle_raw < 0) || (lean_angle_filtered < 0 && lean_angle_raw > 0) || (abs(lean_angle_raw) > HYBRID_STICK_RELEASE_SMOOTH_ANGLE)) { lean_angle_filtered = lean_angle_raw; } else { // lean_angle_raw must be pulling lean_angle_filtered towards zero, smooth the decrease if (lean_angle_filtered > 0) { // reduce the filtered lean angle at 4% or the brake rate (whichever is faster). lean_angle_filtered -= max((float)lean_angle_filtered * HYBRID_SMOOTH_RATE_FACTOR, g.hybrid_brake_rate); // do not let the filtered angle fall below the pilot's input lean angle. // the above line pulls the filtered angle down and the below line acts as a catch lean_angle_filtered = max(lean_angle_filtered, lean_angle_raw); }else{ lean_angle_filtered += max(-(float)lean_angle_filtered * HYBRID_SMOOTH_RATE_FACTOR, g.hybrid_brake_rate); lean_angle_filtered = min(lean_angle_filtered, lean_angle_raw); } } } // hybrid_mix_controls - mixes two controls based on the mix_ratio // mix_ratio of 1 = use first_control completely, 0 = use second_control completely, 0.5 = mix evenly static int16_t hybrid_mix_controls(float mix_ratio, int16_t first_control, int16_t second_control) { mix_ratio = constrain_float(mix_ratio, 0.0f, 1.0f); return (int16_t)((mix_ratio * first_control) + ((1.0f-mix_ratio)*second_control)); } // hybrid_update_brake_angle_from_velocity - updates the brake_angle based on the vehicle's velocity and brake_gain // brake_angle is slewed with the wpnav.hybrid_brake_rate and constrained by the wpnav.hybrid_braking_angle_max // velocity is assumed to be in the same direction as lean angle so for pitch you should provide the velocity backwards (i.e. -ve forward velocity) static void hybrid_update_brake_angle_from_velocity(int16_t &brake_angle, float velocity) { float lean_angle; int16_t brake_rate = g.hybrid_brake_rate; #if MAIN_LOOP_RATE == 400 brake_rate /= 4; if (brake_rate <= 0) { brake_rate = 1; } #endif // calculate velocity-only based lean angle if (velocity >= 0) { lean_angle = -hybrid.brake_gain * velocity * (1.0f+500.0f/(velocity+60.0f)); } else { lean_angle = -hybrid.brake_gain * velocity * (1.0f+500.0f/(-velocity+60.0f)); } // do not let lean_angle be too far from brake_angle brake_angle = constrain_int16((int16_t)lean_angle, brake_angle - brake_rate, brake_angle + brake_rate); // constrain final brake_angle brake_angle = constrain_int16(brake_angle, -g.hybrid_brake_angle_max, g.hybrid_brake_angle_max); } // hybrid_update_wind_comp_estimate - updates wind compensation estimate // should be called at the maximum loop rate when loiter is engaged static void hybrid_update_wind_comp_estimate() { // reduce rate to 10hz hybrid.wind_comp_timer++; if (hybrid.wind_comp_timer < HYBRID_WIND_COMP_TIMER_10HZ) { return; } hybrid.wind_comp_timer = 0; // check wind estimate start has not been delayed if (hybrid.wind_comp_start_timer > 0) { hybrid.wind_comp_start_timer--; return; } // check horizontal velocity is low if (inertial_nav.get_velocity_xy() > HYBRID_WIND_COMP_ESTIMATE_SPEED_MAX) { return; } // get position controller accel target // To-Do: clean this up by using accessor in loiter controller (or move entire hybrid controller to a library shared with loiter) const Vector3f& accel_target = pos_control.get_accel_target(); // update wind compensation in earth-frame lean angles if (hybrid.wind_comp_ef.x == 0) { // if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction hybrid.wind_comp_ef.x = accel_target.x; } else { // low pass filter the position controller's lean angle output hybrid.wind_comp_ef.x = 0.97f*hybrid.wind_comp_ef.x + 0.03f*accel_target.x; } if (hybrid.wind_comp_ef.y == 0) { // if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction hybrid.wind_comp_ef.y = accel_target.y; } else { // low pass filter the position controller's lean angle output hybrid.wind_comp_ef.y = 0.97f*hybrid.wind_comp_ef.y + 0.03f*accel_target.y; } } // hybrid_get_wind_comp_lean_angles - retrieve wind compensation angles in body frame roll and pitch angles static void hybrid_get_wind_comp_lean_angles(int16_t &roll_angle, int16_t &pitch_angle) { // convert earth frame desired accelerations to body frame roll and pitch lean angles roll_angle = (float)fast_atan((-hybrid.wind_comp_ef.x*ahrs.sin_yaw() + hybrid.wind_comp_ef.y*ahrs.cos_yaw())/981)*(18000/M_PI); pitch_angle = (float)fast_atan(-(hybrid.wind_comp_ef.x*ahrs.cos_yaw() + hybrid.wind_comp_ef.y*ahrs.sin_yaw())/981)*(18000/M_PI); }