/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /**************************************************************************** * * Coded by VĂ­ctor Mayoral Vilches using * l3gd20.cpp from the PX4 Development Team. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ #include #include "AP_InertialSensor_L3GD20.h" extern const AP_HAL::HAL& hal; #if CONFIG_HAL_BOARD == HAL_BOARD_APM2 #define L3GD20_DRDY_PIN 70 #elif CONFIG_HAL_BOARD == HAL_BOARD_LINUX #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLE || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXF #include "../AP_HAL_Linux/GPIO.h" #define L3GD20_DRDY_PIN BBB_P8_34 // GYRO_DRDY #endif #endif /* L3GD20 definitions */ /* Orientation on board */ #define SENSOR_BOARD_ROTATION_000_DEG 0 #define SENSOR_BOARD_ROTATION_090_DEG 1 #define SENSOR_BOARD_ROTATION_180_DEG 2 #define SENSOR_BOARD_ROTATION_270_DEG 3 /* SPI protocol address bits */ #define DIR_READ (1<<7) #define DIR_WRITE (0<<7) #define ADDR_INCREMENT (1<<6) /* register addresses */ #define ADDR_WHO_AM_I 0x0F #define WHO_I_AM_H 0xD7 #define WHO_I_AM 0xD4 #define ADDR_CTRL_REG1 0x20 #define REG1_RATE_LP_MASK 0xF0 /* Mask to guard partial register update */ /* keep lowpass low to avoid noise issues */ #define RATE_95HZ_LP_25HZ ((0<<7) | (0<<6) | (0<<5) | (1<<4)) #define RATE_190HZ_LP_25HZ ((0<<7) | (1<<6) | (0<<5) | (1<<4)) #define RATE_190HZ_LP_50HZ ((0<<7) | (1<<6) | (1<<5) | (0<<4)) #define RATE_190HZ_LP_70HZ ((0<<7) | (1<<6) | (1<<5) | (1<<4)) #define RATE_380HZ_LP_20HZ ((1<<7) | (0<<6) | (1<<5) | (0<<4)) #define RATE_380HZ_LP_25HZ ((1<<7) | (0<<6) | (0<<5) | (1<<4)) #define RATE_380HZ_LP_50HZ ((1<<7) | (0<<6) | (1<<5) | (0<<4)) #define RATE_380HZ_LP_100HZ ((1<<7) | (0<<6) | (1<<5) | (1<<4)) #define RATE_760HZ_LP_30HZ ((1<<7) | (1<<6) | (0<<5) | (0<<4)) #define RATE_760HZ_LP_35HZ ((1<<7) | (1<<6) | (0<<5) | (1<<4)) #define RATE_760HZ_LP_50HZ ((1<<7) | (1<<6) | (1<<5) | (0<<4)) #define RATE_760HZ_LP_100HZ ((1<<7) | (1<<6) | (1<<5) | (1<<4)) #define ADDR_CTRL_REG2 0x21 #define ADDR_CTRL_REG3 0x22 #define ADDR_CTRL_REG4 0x23 #define REG4_RANGE_MASK 0x30 /* Mask to guard partial register update */ #define RANGE_250DPS (0<<4) #define RANGE_500DPS (1<<4) #define RANGE_2000DPS (3<<4) #define ADDR_CTRL_REG5 0x24 #define ADDR_REFERENCE 0x25 #define ADDR_OUT_TEMP 0x26 #define ADDR_STATUS_REG 0x27 #define ADDR_OUT_X_L 0x28 #define ADDR_OUT_X_H 0x29 #define ADDR_OUT_Y_L 0x2A #define ADDR_OUT_Y_H 0x2B #define ADDR_OUT_Z_L 0x2C #define ADDR_OUT_Z_H 0x2D #define ADDR_FIFO_CTRL_REG 0x2E #define ADDR_FIFO_SRC_REG 0x2F #define ADDR_INT1_CFG 0x30 #define ADDR_INT1_SRC 0x31 #define ADDR_INT1_TSH_XH 0x32 #define ADDR_INT1_TSH_XL 0x33 #define ADDR_INT1_TSH_YH 0x34 #define ADDR_INT1_TSH_YL 0x35 #define ADDR_INT1_TSH_ZH 0x36 #define ADDR_INT1_TSH_ZL 0x37 #define ADDR_INT1_DURATION 0x38 /* Internal configuration values */ #define REG1_POWER_NORMAL (1<<3) #define REG1_Z_ENABLE (1<<2) #define REG1_Y_ENABLE (1<<1) #define REG1_X_ENABLE (1<<0) #define REG4_BDU (1<<7) #define REG4_BLE (1<<6) //#define REG4_SPI_3WIRE (1<<0) #define REG5_FIFO_ENABLE (1<<6) #define REG5_REBOOT_MEMORY (1<<7) #define STATUS_ZYXOR (1<<7) #define STATUS_ZOR (1<<6) #define STATUS_YOR (1<<5) #define STATUS_XOR (1<<4) #define STATUS_ZYXDA (1<<3) #define STATUS_ZDA (1<<2) #define STATUS_YDA (1<<1) #define STATUS_XDA (1<<0) #define FIFO_CTRL_BYPASS_MODE (0<<5) #define FIFO_CTRL_FIFO_MODE (1<<5) #define FIFO_CTRL_STREAM_MODE (1<<6) #define FIFO_CTRL_STREAM_TO_FIFO_MODE (3<<5) #define FIFO_CTRL_BYPASS_TO_STREAM_MODE (1<<7) #define L3GD20_DEFAULT_RATE 760 #define L3GD20_DEFAULT_RANGE_DPS 2000 #define L3GD20_DEFAULT_FILTER_FREQ 30 // const float AP_InertialSensor_L3GD20::_gyro_scale = (0.0174532f / 16.4f); AP_InertialSensor_L3GD20::AP_InertialSensor_L3GD20() : AP_InertialSensor(), _drdy_pin(NULL), _initialised(false), _L3GD20_product_id(AP_PRODUCT_ID_NONE) { } uint16_t AP_InertialSensor_L3GD20::_init_sensor( Sample_rate sample_rate ) { if (_initialised) return _L3GD20_product_id; _initialised = true; _spi = hal.spi->device(AP_HAL::SPIDevice_L3GD20); _spi_sem = _spi->get_semaphore(); #ifdef L3GD20_DRDY_PIN _drdy_pin = hal.gpio->channel(L3GD20_DRDY_PIN); _drdy_pin->mode(HAL_GPIO_INPUT); #endif hal.scheduler->suspend_timer_procs(); // Test WHOAMI uint8_t whoami = _register_read(ADDR_WHO_AM_I); if (whoami != WHO_I_AM) { // TODO: we should probably accept multiple chip // revisions. This is the one on the PXF hal.console->printf("L3GD20: unexpected WHOAMI 0x%x\n", (unsigned)whoami); hal.scheduler->panic("L3GD20: bad WHOAMI"); } uint8_t tries = 0; do { bool success = _hardware_init(sample_rate); if (success) { hal.scheduler->delay(5+2); if (!_spi_sem->take(100)) { hal.scheduler->panic(PSTR("L3GD20: Unable to get semaphore")); } if (_data_ready()) { _spi_sem->give(); break; } else { hal.console->println_P( PSTR("L3GD20 startup failed: no data ready")); } _spi_sem->give(); } if (tries++ > 5) { hal.scheduler->panic(PSTR("PANIC: failed to boot L3GD20 5 times")); } } while (1); hal.scheduler->resume_timer_procs(); /* read the first lot of data. * _read_data_transaction requires the spi semaphore to be taken by * its caller. */ _last_sample_time_micros = hal.scheduler->micros(); hal.scheduler->delay(10); if (_spi_sem->take(100)) { _read_data_transaction(); _spi_sem->give(); } // start the timer process to read samples hal.scheduler->register_timer_process(AP_HAL_MEMBERPROC(&AP_InertialSensor_L3GD20::_poll_data)); #if L3GD20_DEBUG _dump_registers(); #endif return _L3GD20_product_id; } /*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */ bool AP_InertialSensor_L3GD20::wait_for_sample(uint16_t timeout_ms) { if (_sample_available()) { return true; } uint32_t start = hal.scheduler->millis(); while ((hal.scheduler->millis() - start) < timeout_ms) { hal.scheduler->delay_microseconds(100); if (_sample_available()) { return true; } } return false; } bool AP_InertialSensor_L3GD20::update( void ) { // wait for at least 1 sample if (!wait_for_sample(1000)) { return false; } // disable timer procs for mininum time hal.scheduler->suspend_timer_procs(); _gyro[0] = Vector3f(_gyro_sum.x, _gyro_sum.y, _gyro_sum.z); _num_samples = _sum_count; _gyro_sum.zero(); _sum_count = 0; hal.scheduler->resume_timer_procs(); _gyro[0].rotate(_board_orientation); _gyro[0] *= _gyro_scale / _num_samples; _gyro[0] -= _gyro_offset[0]; // if (_last_filter_hz != _L3GD20_filter) { // if (_spi_sem->take(10)) { // _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW); // _set_filter_register(_L3GD20_filter, 0); // _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); // _error_count = 0; // _spi_sem->give(); // } // } return true; } /*================ HARDWARE FUNCTIONS ==================== */ /** * Return true if the L3GD20 has new data available for reading. * * We use the data ready pin if it is available. Otherwise, read the * status register. */ bool AP_InertialSensor_L3GD20::_data_ready() { if (_drdy_pin) { return _drdy_pin->read() != 0; } } /** * Timer process to poll for new data from the L3GD20. */ void AP_InertialSensor_L3GD20::_poll_data(void) { if (hal.scheduler->in_timerprocess()) { if (!_spi_sem->take_nonblocking()) { /* the semaphore being busy is an expected condition when the mainline code is calling wait_for_sample() which will grab the semaphore. We return now and rely on the mainline code grabbing the latest sample. */ return; } if (_data_ready()) { _last_sample_time_micros = hal.scheduler->micros(); _read_data_transaction(); } _spi_sem->give(); } else { /* Synchronous read - take semaphore */ if (_spi_sem->take(10)) { if (_data_ready()) { _last_sample_time_micros = hal.scheduler->micros(); _read_data_transaction(); } _spi_sem->give(); } else { hal.scheduler->panic( PSTR("PANIC: AP_InertialSensor_L3GD20::_poll_data " "failed to take SPI semaphore synchronously")); } } } void AP_InertialSensor_L3GD20::_read_data_transaction() { struct { uint8_t cmd; uint8_t temp; uint8_t status; int16_t x; int16_t y; int16_t z; } raw_report; /* fetch data from the sensor */ memset(&raw_report, 0, sizeof(raw_report)); raw_report.cmd = ADDR_OUT_TEMP | DIR_READ | ADDR_INCREMENT; _spi->transaction((uint8_t *)&raw_report, (uint8_t *)&raw_report, sizeof(raw_report)); #if L3GD20_USE_DRDY if ((raw_report.status & 0xF) != 0xF) { /* we waited for DRDY, but did not see DRDY on all axes when we captured. That means a transfer error of some sort */ hal.console->println_P( PSTR("L3GD20: DRDY is not on in all axes, transfer error")); return; } #endif _gyro_sum.x += raw_report.x; _gyro_sum.y += raw_report.y; _gyro_sum.z -= raw_report.z; _sum_count++; if (_sum_count == 0) { // rollover - v unlikely _gyro_sum.zero(); } } uint8_t AP_InertialSensor_L3GD20::_register_read( uint8_t reg ) { uint8_t addr = reg | 0x80; // Set most significant bit uint8_t tx[2]; uint8_t rx[2]; tx[0] = addr; tx[1] = 0; _spi->transaction(tx, rx, 2); return rx[1]; } void AP_InertialSensor_L3GD20::_register_write(uint8_t reg, uint8_t val) { uint8_t tx[2]; uint8_t rx[2]; tx[0] = reg; tx[1] = val; _spi->transaction(tx, rx, 2); } /* useful when debugging SPI bus errors */ void AP_InertialSensor_L3GD20::_register_write_check(uint8_t reg, uint8_t val) { uint8_t readed; _register_write(reg, val); readed = _register_read(reg); if (readed != val){ hal.console->printf_P(PSTR("Values doesn't match; written: %02x; read: %02x "), val, readed); } #if L3GD20_DEBUG hal.console->printf_P(PSTR("Values written: %02x; readed: %02x "), val, readed); #endif } /* set the DLPF filter frequency. Assumes caller has taken semaphore TODO needs to be changed according to L3GD20 needs */ // void AP_InertialSensor_L3GD20::_set_filter_register(uint8_t filter_hz, uint8_t default_filter) // { // uint8_t filter = default_filter; // // choose filtering frequency // switch (filter_hz) { // case 5: // filter = BITS_DLPF_CFG_5HZ; // break; // case 10: // filter = BITS_DLPF_CFG_10HZ; // break; // case 20: // filter = BITS_DLPF_CFG_20HZ; // break; // case 42: // filter = BITS_DLPF_CFG_42HZ; // break; // case 98: // filter = BITS_DLPF_CFG_98HZ; // break; // } // if (filter != 0) { // _last_filter_hz = filter_hz; // _register_write(MPUREG_CONFIG, filter); // } // } void AP_InertialSensor_L3GD20::disable_i2c(void) { uint8_t retries = 10; while (retries--) { // add retries uint8_t a = _register_read(0x05); _register_write(0x05, (0x20 | a)); if (_register_read(0x05) == (a | 0x20)) { return; } } hal.scheduler->panic(PSTR("L3GD20: Unable to disable I2C")); } uint8_t AP_InertialSensor_L3GD20::set_samplerate(uint8_t frequency) { uint8_t bits = REG1_POWER_NORMAL | REG1_Z_ENABLE | REG1_Y_ENABLE | REG1_X_ENABLE; if (frequency == 0) frequency = 760; /* use limits good for H or non-H models */ if (frequency <= 100) { // _current_rate = 95; bits |= RATE_95HZ_LP_25HZ; } else if (frequency <= 200) { // _current_rate = 190; bits |= RATE_190HZ_LP_50HZ; } else if (frequency <= 400) { // _current_rate = 380; bits |= RATE_380HZ_LP_50HZ; } else if (frequency <= 800) { // _current_rate = 760; bits |= RATE_760HZ_LP_50HZ; } else { return -1; } _register_write(ADDR_CTRL_REG1, bits); return 0; } uint8_t AP_InertialSensor_L3GD20::set_range(uint8_t max_dps) { uint8_t bits = REG4_BDU; float new_range_scale_dps_digit; float new_range; if (max_dps == 0) { max_dps = 2000; } if (max_dps <= 250) { new_range = 250; bits |= RANGE_250DPS; new_range_scale_dps_digit = 8.75e-3f; } else if (max_dps <= 500) { new_range = 500; bits |= RANGE_500DPS; new_range_scale_dps_digit = 17.5e-3f; } else if (max_dps <= 2000) { new_range = 2000; bits |= RANGE_2000DPS; new_range_scale_dps_digit = 70e-3f; } else { return -1; } // _gyro_range_rad_s = new_range / 180.0f * M_PI_F; // _gyro_range_scale = new_range_scale_dps_digit / 180.0f * M_PI_F; _gyro_scale = new_range_scale_dps_digit / 180.0f * M_PI_F; _register_write(ADDR_CTRL_REG4, bits); return 0; } bool AP_InertialSensor_L3GD20::_hardware_init(Sample_rate sample_rate) { if (!_spi_sem->take(100)) { hal.scheduler->panic(PSTR("L3GD20: Unable to get semaphore")); } // initially run the bus at low speed _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW); // ensure the chip doesn't interpret any other bus traffic as I2C disable_i2c(); // Chip reset /* set default configuration */ _register_write(ADDR_CTRL_REG1, REG1_POWER_NORMAL | REG1_Z_ENABLE | REG1_Y_ENABLE | REG1_X_ENABLE); hal.scheduler->delay(1); _register_write(ADDR_CTRL_REG2, 0); /* disable high-pass filters */ hal.scheduler->delay(1); _register_write(ADDR_CTRL_REG3, 0x08); /* DRDY enable */ hal.scheduler->delay(1); _register_write(ADDR_CTRL_REG4, REG4_BDU); hal.scheduler->delay(1); _register_write(ADDR_CTRL_REG5, 0); hal.scheduler->delay(1); _register_write(ADDR_CTRL_REG5, REG5_FIFO_ENABLE); /* disable wake-on-interrupt */ hal.scheduler->delay(1); /* disable FIFO. This makes things simpler and ensures we * aren't getting stale data. It means we must run the hrt * callback fast enough to not miss data. */ _register_write(ADDR_FIFO_CTRL_REG, FIFO_CTRL_BYPASS_MODE); hal.scheduler->delay(1); set_samplerate(0); // 760Hz hal.scheduler->delay(1); set_range(L3GD20_DEFAULT_RANGE_DPS); hal.scheduler->delay(1); // //TODO: Filtering // uint8_t default_filter; // // sample rate and filtering // // to minimise the effects of aliasing we choose a filter // // that is less than half of the sample rate // switch (sample_rate) { // case RATE_50HZ: // // this is used for plane and rover, where noise resistance is // // more important than update rate. Tests on an aerobatic plane // // show that 10Hz is fine, and makes it very noise resistant // default_filter = BITS_DLPF_CFG_10HZ; // _sample_shift = 2; // break; // case RATE_100HZ: // default_filter = BITS_DLPF_CFG_20HZ; // _sample_shift = 1; // break; // case RATE_200HZ: // default: // default_filter = BITS_DLPF_CFG_20HZ; // _sample_shift = 0; // break; // } // _set_filter_register(_L3GD20_filter, default_filter); // now that we have initialised, we set the SPI bus speed to high _spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); _spi_sem->give(); return true; } // return the MPU6k gyro drift rate in radian/s/s // note that this is much better than the oilpan gyros float AP_InertialSensor_L3GD20::get_gyro_drift_rate(void) { // 0.5 degrees/second/minute return ToRad(0.5/60); } // return true if a sample is available bool AP_InertialSensor_L3GD20::_sample_available() { _poll_data(); // return (_sum_count >> _sample_shift) > 0; return (_sum_count) > 0; } #if L3GD20_DEBUG // dump all config registers - used for debug void AP_InertialSensor_L3GD20::_dump_registers(void) { hal.console->println_P(PSTR("L3GD20 registers")); if (_spi_sem->take(100)) { for (uint8_t reg=ADDR_WHO_AM_I; reg<=56; reg++) { // 0x38 = 56 uint8_t v = _register_read(reg); hal.console->printf_P(PSTR("%02x:%02x "), (unsigned)reg, (unsigned)v); if ((reg - (ADDR_WHO_AM_I-1)) % 16 == 0) { hal.console->println(); } } hal.console->println(); _spi_sem->give(); } } #endif // get_delta_time returns the time period in seconds overwhich the sensor data was collected float AP_InertialSensor_L3GD20::get_delta_time() const { // the sensor runs at 200Hz return 0.005 * _num_samples; }