/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_Compass_PX4.cpp - Arduino Library for PX4 magnetometer * */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 #include "AP_Compass_PX4.h" #include #include #include #include #include #include #include #include #include extern const AP_HAL::HAL& hal; // Public Methods ////////////////////////////////////////////////////////////// bool AP_Compass_PX4::init(void) { _mag_fd[0] = open(MAG_DEVICE_PATH, O_RDONLY); _mag_fd[1] = open(MAG_DEVICE_PATH "1", O_RDONLY); _mag_fd[2] = open(MAG_DEVICE_PATH "2", O_RDONLY); _num_instances = 0; for (uint8_t i=0; i= 0) { _num_instances = i+1; } } if (_num_instances == 0) { hal.console->printf("Unable to open " MAG_DEVICE_PATH "\n"); return false; } for (uint8_t i=0; i<_num_instances; i++) { // get device id _dev_id[i] = ioctl(_mag_fd[i], DEVIOCGDEVICEID, 0); // average over up to 20 samples if (ioctl(_mag_fd[i], SENSORIOCSQUEUEDEPTH, 20) != 0) { hal.console->printf("Failed to setup compass queue\n"); return false; } // remember if the compass is external _is_external[i] = (ioctl(_mag_fd[i], MAGIOCGEXTERNAL, 0) > 0); if (_is_external[i]) { hal.console->printf("Using external compass[%u]\n", (unsigned)i); } _count[0] = 0; _sum[i].zero(); _healthy[i] = false; } // give the driver a chance to run, and gather one sample hal.scheduler->delay(40); accumulate(); if (_count[0] == 0) { hal.console->printf("Failed initial compass accumulate\n"); } return true; } bool AP_Compass_PX4::read(void) { // try to accumulate one more sample, so we have the latest data accumulate(); // consider the compass healthy if we got a reading in the last 0.2s for (uint8_t i=0; i<_num_instances; i++) { _healthy[i] = (hrt_absolute_time() - _last_timestamp[i] < 200000); } for (uint8_t i=0; i<_num_instances; i++) { // avoid division by zero if we haven't received any mag reports if (_count[i] == 0) continue; _sum[i] /= _count[i]; _sum[i] *= 1000; // apply default board orientation for this compass type. This is // a noop on most boards _sum[i].rotate(MAG_BOARD_ORIENTATION); // override any user setting of COMPASS_EXTERNAL _external.set(_is_external[0]); if (_is_external[i]) { // add user selectable orientation _sum[i].rotate((enum Rotation)_orientation.get()); } else { // add in board orientation from AHRS _sum[i].rotate(_board_orientation); } _sum[i] += _offset[i].get(); // apply motor compensation if (_motor_comp_type != AP_COMPASS_MOT_COMP_DISABLED && _thr_or_curr != 0.0f) { _motor_offset[i] = _motor_compensation[i].get() * _thr_or_curr; _sum[i] += _motor_offset[i]; } else { _motor_offset[i].zero(); } _field[i] = _sum[i]; _sum[i].zero(); _count[i] = 0; } last_update = _last_timestamp[get_primary()]; return _healthy[get_primary()]; } void AP_Compass_PX4::accumulate(void) { struct mag_report mag_report; for (uint8_t i=0; i<_num_instances; i++) { while (::read(_mag_fd[i], &mag_report, sizeof(mag_report)) == sizeof(mag_report) && mag_report.timestamp != _last_timestamp[i]) { _sum[i] += Vector3f(mag_report.x, mag_report.y, mag_report.z); _count[i]++; _last_timestamp[i] = mag_report.timestamp; } } } uint8_t AP_Compass_PX4::get_primary(void) const { if (_primary < _num_instances && _healthy[_primary]) { return _primary; } for (uint8_t i=0; i<_num_instances; i++) { if (_healthy[i]) return i; } return 0; } #endif // CONFIG_HAL_BOARD