/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_RangeFinder_LeddarVu8.h" #if AP_RANGEFINDER_LEDDARVU8_ENABLED #include #include extern const AP_HAL::HAL& hal; // LeddarVu8 uses the modbus RTU protocol // https://autonomoustuff.com/product/leddartech-vu8/ #define LEDDARVU8_ADDR_DEFAULT 0x01 // modbus default device id #define LEDDARVU8_DIST_MAX_CM 18500 // maximum possible distance reported by lidar #define LEDDARVU8_OUT_OF_RANGE_ADD_CM 100 // add this many cm to out-of-range values #define LEDDARVU8_TIMEOUT_MS 200 // timeout in milliseconds if no distance messages received // distance returned in reading_cm, signal_ok is set to true if sensor reports a strong signal bool AP_RangeFinder_LeddarVu8::get_reading(float &reading_m) { if (uart == nullptr) { return false; } // check for timeout receiving messages uint32_t now_ms = AP_HAL::millis(); if (((now_ms - last_distance_ms) > LEDDARVU8_TIMEOUT_MS) && ((now_ms - last_distance_request_ms) > LEDDARVU8_TIMEOUT_MS)) { request_distances(); } // variables for averaging results from multiple messages float sum_cm = 0; uint16_t count = 0; uint16_t count_out_of_range = 0; uint16_t latest_dist_cm = 0; bool latest_dist_valid = false; // read any available characters from the lidar for (auto i=0; i<8192; i++) { uint8_t b; if (!uart->read(b)) { break; } if (parse_byte(b, latest_dist_valid, latest_dist_cm)) { if (latest_dist_valid) { sum_cm += latest_dist_cm; count++; } else { count_out_of_range++; } } } if (count > 0 || count_out_of_range > 0) { // record time of successful read and request another reading last_distance_ms = now_ms; request_distances(); if (count > 0) { // return average distance of readings reading_m = (sum_cm * 0.01f) / count; } else { // if only out of range readings return larger of // driver defined maximum range for the model and user defined max range + 1m reading_m = MAX(LEDDARVU8_DIST_MAX_CM, max_distance_cm() + LEDDARVU8_OUT_OF_RANGE_ADD_CM)*0.01f; } return true; } // no readings so return false return false; } // get sensor address from RNGFNDx_ADDR parameter uint8_t AP_RangeFinder_LeddarVu8::get_sensor_address() const { if (params.address == 0) { return LEDDARVU8_ADDR_DEFAULT; } return params.address; } // send request to device to provide distances void AP_RangeFinder_LeddarVu8::request_distances() { uint8_t req_buf[] = { get_sensor_address(), // address (uint8_t)FunctionCode::READ_INPUT_REGISTER, // function code low 0, // function code high (uint8_t)RegisterNumber::FIRST_DISTANCE0, // register number low 0, // register number high 8, // register count 0, // crc low 0 // crc high }; const uint8_t req_buf_len = sizeof(req_buf); // fill in crc bytes uint16_t crc = calc_crc_modbus(req_buf, req_buf_len - 2); req_buf[req_buf_len - 2] = LOWBYTE(crc); req_buf[req_buf_len - 1] = HIGHBYTE(crc); // send request to device uart->write(req_buf, req_buf_len); // record time of request last_distance_request_ms = AP_HAL::millis(); } // process one byte received on serial port // returns true if successfully parsed a message // if distances are valid, valid_readings is set to true and distance is stored in reading_cm bool AP_RangeFinder_LeddarVu8::parse_byte(uint8_t b, bool &valid_reading, uint16_t &reading_cm) { // process byte depending upon current state switch (parsed_msg.state) { case ParseState::WAITING_FOR_ADDRESS: { if (b == get_sensor_address()) { parsed_msg.address = b; parsed_msg.state = ParseState::WAITING_FOR_FUNCTION_CODE; } break; } case ParseState::WAITING_FOR_FUNCTION_CODE: if (b == (uint8_t)FunctionCode::READ_INPUT_REGISTER) { parsed_msg.function_code = b; parsed_msg.state = ParseState::WAITING_FOR_PAYLOAD_LEN; } else { parsed_msg.state = ParseState::WAITING_FOR_ADDRESS; } break; case ParseState::WAITING_FOR_PAYLOAD_LEN: // only parse messages of the expected length if (b == LEDDARVU8_PAYLOAD_LENGTH) { parsed_msg.payload_len = b; parsed_msg.payload_recv = 0; parsed_msg.state = ParseState::WAITING_FOR_PAYLOAD; } else { parsed_msg.state = ParseState::WAITING_FOR_ADDRESS; } break; case ParseState::WAITING_FOR_PAYLOAD: if (parsed_msg.payload_recv < parsed_msg.payload_len) { if (parsed_msg.payload_recv < ARRAY_SIZE(parsed_msg.payload)) { parsed_msg.payload[parsed_msg.payload_recv] = b; } parsed_msg.payload_recv++; } if (parsed_msg.payload_recv == parsed_msg.payload_len) { parsed_msg.state = ParseState::WAITING_FOR_CRC_LOW; } break; case ParseState::WAITING_FOR_CRC_LOW: parsed_msg.crc = b; parsed_msg.state = ParseState::WAITING_FOR_CRC_HIGH; break; case ParseState::WAITING_FOR_CRC_HIGH: { parsed_msg.crc |= ((uint16_t)b << 8); parsed_msg.state = ParseState::WAITING_FOR_ADDRESS; // check crc uint16_t expected_crc = calc_crc_modbus(&parsed_msg.address, 3+parsed_msg.payload_recv); if (expected_crc == parsed_msg.crc) { // calculate and return shortest distance reading_cm = 0; valid_reading = false; for (uint8_t i=0; i<8; i++) { uint8_t ix2 = i*2; const uint16_t dist_cm = (uint16_t)parsed_msg.payload[ix2] << 8 | (uint16_t)parsed_msg.payload[ix2+1]; if ((dist_cm > 0) && (!valid_reading || (dist_cm < reading_cm))) { reading_cm = dist_cm; valid_reading = true; } } return true; } break; } } valid_reading = false; return false; } #endif // AP_RANGEFINDER_LEDDARVU8_ENABLED