// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- /***************************************************************************** The init_ardupilot function processes everything we need for an in - air restart We will determine later if we are actually on the ground and process a ground start in that case. *****************************************************************************/ // Functions called from the top-level menu extern int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde extern int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde extern int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp // This is the help function // PSTR is an AVR macro to read strings from flash memory // printf_P is a version of print_f that reads from flash memory static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("Commands:\n" " logs log readback/setup mode\n" " setup setup mode\n" " test test mode\n" "\n" "Move the slide switch and reset to FLY.\n" "\n")); return(0); } // Command/function table for the top-level menu. const struct Menu::command main_menu_commands[] PROGMEM = { // command function called // ======= =============== {"logs", process_logs}, {"setup", setup_mode}, {"test", test_mode}, {"help", main_menu_help} }; // Create the top-level menu object. MENU(main_menu, "ArduPilotMega", main_menu_commands); void init_ardupilot() { byte last_log_num; int last_log_start; int last_log_end; // Console serial port // // The console port buffers are defined to be sufficiently large to support // the console's use as a logging device, optionally as the GPS port when // GPS_PROTOCOL_IMU is selected, and as the telemetry port. // // XXX This could be optimised to reduce the buffer sizes in the cases // where they are not otherwise required. // Serial.begin(SERIAL0_BAUD, 128, 128); // GPS serial port. // // Not used if the IMU/X-Plane GPS is in use. // // XXX currently the EM406 (SiRF receiver) is nominally configured // at 57600, however it's not been supported to date. We should // probably standardise on 38400. // // XXX the 128 byte receive buffer may be too small for NMEA, depending // on the message set configured. // #if GPS_PROTOCOL != GPS_PROTOCOL_IMU Serial1.begin(38400, 128, 16); #endif // Telemetry port. // // Not used if telemetry is going to the console. // // XXX for unidirectional protocols, we could (should) minimize // the receive buffer, and the transmit buffer could also be // shrunk for protocols that don't send large messages. // #if GCS_PORT == 3 Serial3.begin(SERIAL3_BAUD, 128, 128); #endif Serial.printf_P(PSTR("\n\n" "Init ArduCopterMega 1.0.0 Public Alpha\n\n" #if TELEMETRY_PORT == 3 "Telemetry is on the xbee port\n" #endif "freeRAM: %d\n"),freeRAM()); read_EEPROM_startup(); // Read critical config information to start init_rc_in(); // sets up rc channels from radio init_rc_out(); // sets up the timer libs init_camera(); adc.Init(); // APM ADC library initialization APM_BMP085.Init(); // APM Abs Pressure sensor initialization DataFlash.Init(); // DataFlash log initialization GPS.init(); // GPS Initialization if(compass_enabled) init_compass(); pinMode(C_LED_PIN, OUTPUT); // GPS status LED pinMode(A_LED_PIN, OUTPUT); // GPS status LED pinMode(B_LED_PIN, OUTPUT); // GPS status LED pinMode(SLIDE_SWITCH_PIN, INPUT); // To enter interactive mode pinMode(PUSHBUTTON_PIN, INPUT); // unused // If the switch is in 'menu' mode, run the main menu. // // Since we can't be sure that the setup or test mode won't leave // the system in an odd state, we don't let the user exit the top // menu; they must reset in order to fly. // if (digitalRead(SLIDE_SWITCH_PIN) == 0) { digitalWrite(A_LED_PIN,HIGH); // turn on setup-mode LED Serial.printf_P(PSTR("\n" "Entering interactive setup mode...\n" "\n" "If using the Arduino Serial Monitor, ensure Line Ending is set to Carriage Return.\n" "Type 'help' to list commands, 'exit' to leave a submenu.\n" "Visit the 'setup' menu for first-time configuration.\n")); for (;;) { Serial.printf_P(PSTR("\n" "Move the slide switch and reset to FLY.\n" "\n")); main_menu.run(); } } if(log_bitmask > 0){ // Here we will check on the length of the last log // We don't want to create a bunch of little logs due to powering on and off last_log_num = eeprom_read_byte((uint8_t *) EE_LAST_LOG_NUM); last_log_start = eeprom_read_word((uint16_t *) (EE_LOG_1_START+(last_log_num - 1) * 0x02)); last_log_end = eeprom_read_word((uint16_t *) EE_LAST_LOG_PAGE); if(last_log_num == 0) { // The log space is empty. Start a write session on page 1 DataFlash.StartWrite(1); eeprom_write_byte((uint8_t *) EE_LAST_LOG_NUM, (1)); eeprom_write_word((uint16_t *) EE_LOG_1_START, (1)); } else if (last_log_end <= last_log_start + 10) { // The last log is small. We consider it junk. Overwrite it. DataFlash.StartWrite(last_log_start); } else { // The last log is valid. Start a new log if(last_log_num >= 19) { Serial.println("Number of log files exceeds max. Log 19 will be overwritten."); last_log_num --; } DataFlash.StartWrite(last_log_end + 1); eeprom_write_byte((uint8_t *) EE_LAST_LOG_NUM, (last_log_num + 1)); eeprom_write_word((uint16_t *) (EE_LOG_1_START+(last_log_num)*0x02), (last_log_end + 1)); } } // read in the flight switches //update_servo_switches(); //Serial.print("GROUND START"); send_message(SEVERITY_LOW,"GROUND START"); startup_ground(); if (log_bitmask & MASK_LOG_CMD) Log_Write_Startup(TYPE_GROUNDSTART_MSG); // set the correct flight mode // --------------------------- reset_control_switch(); } /* byte startup_check(void){ if(DEBUG_SUBSYSTEM > 0){ debug_subsystem(); }else{ if (rc_3.radio_in < (rc_3.radio_in + 25)){ // we are on the ground return 1; }else{ return 0; } } } */ //******************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //******************************************************************************** void startup_ground(void) { /* read_radio(); while (rc_3.control_in > 0){ delay(20); read_radio(); APM_RC.OutputCh(CH_1, rc_3.radio_in); APM_RC.OutputCh(CH_2, rc_3.radio_in); APM_RC.OutputCh(CH_3, rc_3.radio_in); APM_RC.OutputCh(CH_4, rc_3.radio_in); Serial.println("*") } */ if (log_bitmask & MASK_LOG_CMD) Log_Write_Startup(TYPE_GROUNDSTART_MSG); #if(GROUND_START_DELAY > 0) send_message(SEVERITY_LOW,"With Delay"); delay(GROUND_START_DELAY * 1000); #endif // Output waypoints for confirmation // -------------------------------- for(int i = 1; i < wp_total + 1; i++) { send_message(MSG_COMMAND, i); } //IMU ground start //------------------------ #if GPS_PROTOCOL != GPS_PROTOCOL_IMU init_pressure_ground(); #endif // read the radio to set trims // --------------------------- trim_radio(); // Warm up and read Gyro offsets // ----------------------------- imu.init_gyro(); // Save the settings for in-air restart // ------------------------------------ save_EEPROM_groundstart(); // initialize commands // ------------------- init_commands(); send_message(SEVERITY_LOW,"\n\n Ready to FLY."); } void set_mode(byte mode) { if(control_mode == mode){ // don't switch modes if we are already in the correct mode. return; } control_mode = mode; control_mode = constrain(control_mode, 0, NUM_MODES - 1); save_EEPROM_PID(); //send_message(SEVERITY_LOW,"control mode"); //Serial.printf("set mode: %d old: %d\n", (int)mode, (int)control_mode); switch(control_mode) { case ACRO: break; case STABILIZE: set_current_loc_here(); break; case ALT_HOLD: set_current_loc_here(); break; case AUTO: update_auto(); break; case POSITION_HOLD: set_current_loc_here(); break; case RTL: return_to_launch(); break; case TAKEOFF: break; case LAND: break; default: break; } // output control mode to the ground station send_message(MSG_HEARTBEAT); if (log_bitmask & MASK_LOG_MODE) Log_Write_Mode(control_mode); } void set_failsafe(boolean mode) { // only act on changes // ------------------- if(failsafe != mode){ // store the value so we don't trip the gate twice // ----------------------------------------------- failsafe = mode; if (failsafe == false){ // We're back in radio contact // --------------------------- // re-read the switch so we can return to our preferred mode reset_control_switch(); // Reset control integrators // --------------------- reset_I(); }else{ // We've lost radio contact // ------------------------ // nothing to do right now } // Let the user know what's up so they can override the behavior // ------------------------------------------------------------- failsafe_event(); } } void update_GPS_light(void) { // GPS LED on if we have a fix or Blink GPS LED if we are receiving data // --------------------------------------------------------------------- if(GPS.fix == 0){ GPS_light = !GPS_light; if(GPS_light){ digitalWrite(C_LED_PIN, HIGH); digitalWrite(A_LED_PIN, HIGH); digitalWrite(B_LED_PIN, HIGH); }else{ digitalWrite(C_LED_PIN, LOW); digitalWrite(A_LED_PIN, LOW); digitalWrite(B_LED_PIN, LOW); } }else{ if(!GPS_light){ GPS_light = true; digitalWrite(C_LED_PIN, HIGH); digitalWrite(A_LED_PIN, HIGH); digitalWrite(B_LED_PIN, HIGH); } } } void resetPerfData(void) { /* mainLoop_count = 0; G_Dt_max = 0; gyro_sat_count = 0; adc_constraints = 0; renorm_sqrt_count = 0; renorm_blowup_count = 0; gps_fix_count = 0; perf_mon_timer = millis(); */ } void init_compass() { dcm.set_compass(&compass); compass.init(false); compass.set_orientation(MAGORIENTATION); // set compass's orientation on aircraft compass.set_offsets(mag_offset_x, mag_offset_y, mag_offset_z); // set offsets to account for surrounding interference compass.set_declination(ToRad(mag_declination)); // set local difference between magnetic north and true north } /* This function gets the current value of the heap and stack pointers. * The stack pointer starts at the top of RAM and grows downwards. The heap pointer * starts just above the static variables etc. and grows upwards. SP should always * be larger than HP or you'll be in big trouble! The smaller the gap, the more * careful you need to be. Julian Gall 6 - Feb - 2009. */ unsigned long freeRAM() { uint8_t * heapptr, * stackptr; stackptr = (uint8_t *)malloc(4); // use stackptr temporarily heapptr = stackptr; // save value of heap pointer free(stackptr); // free up the memory again (sets stackptr to 0) stackptr = (uint8_t *)(SP); // save value of stack pointer return stackptr - heapptr; }