// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* RC_Channel.cpp - Radio library for Arduino
* Code by Jason Short. DIYDrones.com
*
*/
#include
#include
#include
extern const AP_HAL::HAL& hal;
#include
#include "RC_Channel.h"
/// global array with pointers to all APM RC channels, will be used by AP_Mount
/// and AP_Camera classes / It points to RC input channels, both APM1 and APM2
/// only have 8 input channels.
RC_Channel *RC_Channel::rc_ch[RC_MAX_CHANNELS];
const AP_Param::GroupInfo RC_Channel::var_info[] PROGMEM = {
// @Param: MIN
// @DisplayName: RC min PWM
// @Description: RC minimum PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: pwm
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("MIN", 0, RC_Channel, radio_min, 1100),
// @Param: TRIM
// @DisplayName: RC trim PWM
// @Description: RC trim (neutral) PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: pwm
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("TRIM", 1, RC_Channel, radio_trim, 1500),
// @Param: MAX
// @DisplayName: RC max PWM
// @Description: RC maximum PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: pwm
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("MAX", 2, RC_Channel, radio_max, 1900),
// @Param: REV
// @DisplayName: RC reverse
// @Description: Reverse servo operation. Set to 1 for normal (forward) operation. Set to -1 to reverse this channel.
// @Values: -1:Reversed,1:Normal
// @User: Advanced
AP_GROUPINFO("REV", 3, RC_Channel, _reverse, 1),
// Note: index 4 was used by the previous _dead_zone value. We
// changed it to 5 as dead zone values had previously been
// incorrectly saved, overriding user values. They were also
// incorrectly interpreted for the throttle on APM:Plane
// @Param: DZ
// @DisplayName: RC dead-zone
// @Description: dead zone around trim.
// @Units: pwm
// @Range: 0 200
// @User: Advanced
AP_GROUPINFO("DZ", 5, RC_Channel, _dead_zone, 0),
AP_GROUPEND
};
// setup the control preferences
void
RC_Channel::set_range(int16_t low, int16_t high)
{
_type = RC_CHANNEL_TYPE_RANGE;
_high = high;
_low = low;
_high_out = high;
_low_out = low;
}
void
RC_Channel::set_range_out(int16_t low, int16_t high)
{
_high_out = high;
_low_out = low;
}
void
RC_Channel::set_angle(int16_t angle)
{
_type = RC_CHANNEL_TYPE_ANGLE;
_high = angle;
}
void
RC_Channel::set_default_dead_zone(int16_t dzone)
{
if (!_dead_zone.load()) {
_dead_zone.set(abs(dzone));
}
}
void
RC_Channel::set_reverse(bool reverse)
{
if (reverse) _reverse = -1;
else _reverse = 1;
}
bool
RC_Channel::get_reverse(void) const
{
if (_reverse == -1) {
return true;
}
return false;
}
void
RC_Channel::set_type(uint8_t t)
{
_type = t;
}
// call after first read
void
RC_Channel::trim()
{
radio_trim = radio_in;
}
// read input from APM_RC - create a control_in value
void
RC_Channel::set_pwm(int16_t pwm)
{
radio_in = pwm;
if (_type == RC_CHANNEL_TYPE_RANGE) {
control_in = pwm_to_range();
} else {
//RC_CHANNEL_TYPE_ANGLE, RC_CHANNEL_TYPE_ANGLE_RAW
control_in = pwm_to_angle();
}
}
/*
call read() and set_pwm() on all channels
*/
void
RC_Channel::set_pwm_all(void)
{
for (uint8_t i=0; iset_pwm(rc_ch[i]->read());
}
}
}
// read input from APM_RC - create a control_in value, but use a
// zero value for the dead zone. When done this way the control_in
// value can be used as servo_out to give the same output as input
void
RC_Channel::set_pwm_no_deadzone(int16_t pwm)
{
radio_in = pwm;
if (_type == RC_CHANNEL_TYPE_RANGE) {
control_in = pwm_to_range_dz(0);
} else {
//RC_CHANNEL_ANGLE, RC_CHANNEL_ANGLE_RAW
control_in = pwm_to_angle_dz(0);
}
}
int16_t
RC_Channel::control_mix(float value)
{
return (1 - abs(control_in / _high)) * value + control_in;
}
// are we below a threshold?
bool
RC_Channel::get_failsafe(void)
{
return (radio_in < (radio_min - 50));
}
// returns just the PWM without the offset from radio_min
void
RC_Channel::calc_pwm(void)
{
if(_type == RC_CHANNEL_TYPE_RANGE) {
pwm_out = range_to_pwm();
radio_out = (_reverse >= 0) ? (radio_min + pwm_out) : (radio_max - pwm_out);
}else if(_type == RC_CHANNEL_TYPE_ANGLE_RAW) {
pwm_out = (float)servo_out * 0.1f;
int16_t reverse_mul = (_reverse==-1?-1:1);
radio_out = (pwm_out * reverse_mul) + radio_trim;
}else{ // RC_CHANNEL_TYPE_ANGLE
pwm_out = angle_to_pwm();
radio_out = pwm_out + radio_trim;
}
radio_out = constrain_int16(radio_out, radio_min.get(), radio_max.get());
}
/*
return the center stick position expressed as a control_in value
used for thr_mid in copter
*/
int16_t
RC_Channel::get_control_mid() const {
if (_type == RC_CHANNEL_TYPE_RANGE) {
int16_t r_in = (radio_min.get()+radio_max.get())/2;
if (_reverse == -1) {
r_in = radio_max.get() - (r_in - radio_min.get());
}
int16_t radio_trim_low = radio_min + _dead_zone;
return (_low + ((int32_t)(_high - _low) * (int32_t)(r_in - radio_trim_low)) / (int32_t)(radio_max - radio_trim_low));
} else {
return 0;
}
}
// ------------------------------------------
void
RC_Channel::load_eeprom(void)
{
radio_min.load();
radio_trim.load();
radio_max.load();
_reverse.load();
_dead_zone.load();
}
void
RC_Channel::save_eeprom(void)
{
radio_min.save();
radio_trim.save();
radio_max.save();
_reverse.save();
_dead_zone.save();
}
// ------------------------------------------
void
RC_Channel::zero_min_max()
{
radio_min = radio_max = radio_in;
}
void
RC_Channel::update_min_max()
{
radio_min = min(radio_min.get(), radio_in);
radio_max = max(radio_max.get(), radio_in);
}
/*
return an "angle in centidegrees" (normally -4500 to 4500) from
the current radio_in value using the specified dead_zone
*/
int16_t
RC_Channel::pwm_to_angle_dz(uint16_t dead_zone)
{
int16_t radio_trim_high = radio_trim + dead_zone;
int16_t radio_trim_low = radio_trim - dead_zone;
// prevent div by 0
if ((radio_trim_low - radio_min) == 0 || (radio_max - radio_trim_high) == 0)
return 0;
int16_t reverse_mul = (_reverse==-1?-1:1);
if(radio_in > radio_trim_high) {
return reverse_mul * ((int32_t)_high * (int32_t)(radio_in - radio_trim_high)) / (int32_t)(radio_max - radio_trim_high);
}else if(radio_in < radio_trim_low) {
return reverse_mul * ((int32_t)_high * (int32_t)(radio_in - radio_trim_low)) / (int32_t)(radio_trim_low - radio_min);
}else
return 0;
}
/*
return an "angle in centidegrees" (normally -4500 to 4500) from
the current radio_in value
*/
int16_t
RC_Channel::pwm_to_angle()
{
return pwm_to_angle_dz(_dead_zone);
}
int16_t
RC_Channel::angle_to_pwm()
{
int16_t reverse_mul = (_reverse==-1?-1:1);
if((servo_out * reverse_mul) > 0) {
return reverse_mul * ((int32_t)servo_out * (int32_t)(radio_max - radio_trim)) / (int32_t)_high;
} else {
return reverse_mul * ((int32_t)servo_out * (int32_t)(radio_trim - radio_min)) / (int32_t)_high;
}
}
/*
convert a pulse width modulation value to a value in the configured
range, using the specified deadzone
*/
int16_t
RC_Channel::pwm_to_range_dz(uint16_t dead_zone)
{
int16_t r_in = constrain_int16(radio_in, radio_min.get(), radio_max.get());
if (_reverse == -1) {
r_in = radio_max.get() - (r_in - radio_min.get());
}
int16_t radio_trim_low = radio_min + dead_zone;
if (r_in > radio_trim_low)
return (_low + ((int32_t)(_high - _low) * (int32_t)(r_in - radio_trim_low)) / (int32_t)(radio_max - radio_trim_low));
else if (dead_zone > 0)
return 0;
else
return _low;
}
/*
convert a pulse width modulation value to a value in the configured
range
*/
int16_t
RC_Channel::pwm_to_range()
{
return pwm_to_range_dz(_dead_zone);
}
int16_t
RC_Channel::range_to_pwm()
{
if (_high_out == _low_out) {
return radio_trim;
}
return ((int32_t)(servo_out - _low_out) * (int32_t)(radio_max - radio_min)) / (int32_t)(_high_out - _low_out);
}
// ------------------------------------------
float
RC_Channel::norm_input()
{
float ret;
int16_t reverse_mul = (_reverse==-1?-1:1);
if (radio_in < radio_trim) {
ret = reverse_mul * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min);
} else {
ret = reverse_mul * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim);
}
return constrain_float(ret, -1.0f, 1.0f);
}
float
RC_Channel::norm_input_dz()
{
int16_t dz_min = radio_trim - _dead_zone;
int16_t dz_max = radio_trim + _dead_zone;
float ret;
int16_t reverse_mul = (_reverse==-1?-1:1);
if (radio_in < dz_min && dz_min > radio_min) {
ret = reverse_mul * (float)(radio_in - dz_min) / (float)(dz_min - radio_min);
} else if (radio_in > dz_max && radio_max > dz_max) {
ret = reverse_mul * (float)(radio_in - dz_max) / (float)(radio_max - dz_max);
} else {
ret = 0;
}
return constrain_float(ret, -1.0f, 1.0f);
}
/*
get percentage input from 0 to 100. This ignores the trim value.
*/
uint8_t
RC_Channel::percent_input()
{
if (radio_in <= radio_min) {
return _reverse==-1?100:0;
}
if (radio_in >= radio_max) {
return _reverse==-1?0:100;
}
uint8_t ret = 100.0f * (radio_in - radio_min) / (float)(radio_max - radio_min);
if (_reverse == -1) {
ret = 100 - ret;
}
return ret;
}
float
RC_Channel::norm_output()
{
int16_t mid = (radio_max + radio_min) / 2;
float ret;
if(radio_out < mid)
ret = (float)(radio_out - mid) / (float)(mid - radio_min);
else
ret = (float)(radio_out - mid) / (float)(radio_max - mid);
if (_reverse == -1) {
ret = -ret;
}
return ret;
}
void RC_Channel::output() const
{
hal.rcout->write(_ch_out, radio_out);
}
void RC_Channel::output_trim() const
{
hal.rcout->write(_ch_out, radio_trim);
}
void RC_Channel::output_trim_all()
{
for (uint8_t i=0; ioutput_trim();
}
}
}
/*
setup the failsafe value to the trim value for all channels
*/
void RC_Channel::setup_failsafe_trim_all()
{
for (uint8_t i=0; iset_failsafe_pwm(1U<radio_trim);
}
}
}
void
RC_Channel::input()
{
radio_in = hal.rcin->read(_ch_out);
}
uint16_t
RC_Channel::read() const
{
return hal.rcin->read(_ch_out);
}
void
RC_Channel::enable_out()
{
hal.rcout->enable_ch(_ch_out);
}
void
RC_Channel::disable_out()
{
hal.rcout->disable_ch(_ch_out);
}
RC_Channel *RC_Channel::rc_channel(uint8_t i)
{
if (i >= RC_MAX_CHANNELS) {
return NULL;
}
return rc_ch[i];
}
// return a limit PWM value
uint16_t RC_Channel::get_limit_pwm(LimitValue limit) const
{
switch (limit) {
case RC_CHANNEL_LIMIT_TRIM:
return radio_trim;
case RC_CHANNEL_LIMIT_MAX:
return get_reverse() ? radio_min : radio_max;
case RC_CHANNEL_LIMIT_MIN:
return get_reverse() ? radio_max : radio_min;
}
// invalid limit value, return trim
return radio_trim;
}