/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see .
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include
#ifndef HAL_SCHEDULER_ENABLED
#define HAL_SCHEDULER_ENABLED 1
#endif
#if HAL_SCHEDULER_ENABLED
#include
#include
#include "AP_HAL_ChibiOS.h"
#include "Scheduler.h"
#include "Util.h"
#include "GPIO.h"
#include
#include
#include
#include
#include
#include
#include
#if CH_CFG_USE_DYNAMIC == TRUE
#include
#include
#include
#include
#include "hwdef/common/stm32_util.h"
#include "hwdef/common/flash.h"
#include "hwdef/common/watchdog.h"
#include
#include "shared_dma.h"
#include
#include
#if HAL_WITH_IO_MCU
#include
extern AP_IOMCU iomcu;
#endif
using namespace ChibiOS;
#ifndef HAL_RCIN_THREAD_ENABLED
#define HAL_RCIN_THREAD_ENABLED 1
#endif
#ifndef HAL_MONITOR_THREAD_ENABLED
#define HAL_MONITOR_THREAD_ENABLED 1
#endif
extern const AP_HAL::HAL& hal;
#ifndef HAL_NO_TIMER_THREAD
THD_WORKING_AREA(_timer_thread_wa, TIMER_THD_WA_SIZE);
#endif
#ifndef HAL_NO_RCOUT_THREAD
THD_WORKING_AREA(_rcout_thread_wa, RCOUT_THD_WA_SIZE);
#endif
#if HAL_RCIN_THREAD_ENABLED
THD_WORKING_AREA(_rcin_thread_wa, RCIN_THD_WA_SIZE);
#endif
#ifndef HAL_USE_EMPTY_IO
THD_WORKING_AREA(_io_thread_wa, IO_THD_WA_SIZE);
#endif
#ifndef HAL_USE_EMPTY_STORAGE
THD_WORKING_AREA(_storage_thread_wa, STORAGE_THD_WA_SIZE);
#endif
#if HAL_MONITOR_THREAD_ENABLED
THD_WORKING_AREA(_monitor_thread_wa, MONITOR_THD_WA_SIZE);
#endif
// while the vehicle is being initialised we expect there to be random
// delays which may exceed the watchdog timeout. By default, We pat
// the watchdog in the timer thread during setup to avoid the watchdog:
#ifndef AP_HAL_CHIBIOS_IN_EXPECTED_DELAY_WHEN_NOT_INITIALISED
#define AP_HAL_CHIBIOS_IN_EXPECTED_DELAY_WHEN_NOT_INITIALISED 1
#endif
Scheduler::Scheduler()
{
}
void Scheduler::init()
{
chBSemObjectInit(&_timer_semaphore, false);
chBSemObjectInit(&_io_semaphore, false);
#if HAL_MONITOR_THREAD_ENABLED
// setup the monitor thread - this is used to detect software lockups
_monitor_thread_ctx = chThdCreateStatic(_monitor_thread_wa,
sizeof(_monitor_thread_wa),
APM_MONITOR_PRIORITY, /* Initial priority. */
_monitor_thread, /* Thread function. */
this); /* Thread parameter. */
#endif
#ifndef HAL_NO_TIMER_THREAD
// setup the timer thread - this will call tasks at 1kHz
_timer_thread_ctx = chThdCreateStatic(_timer_thread_wa,
sizeof(_timer_thread_wa),
APM_TIMER_PRIORITY, /* Initial priority. */
_timer_thread, /* Thread function. */
this); /* Thread parameter. */
#endif
#ifndef HAL_NO_RCOUT_THREAD
// setup the RCOUT thread - this will call tasks at 1kHz
_rcout_thread_ctx = chThdCreateStatic(_rcout_thread_wa,
sizeof(_rcout_thread_wa),
APM_RCOUT_PRIORITY, /* Initial priority. */
_rcout_thread, /* Thread function. */
this); /* Thread parameter. */
#endif
#if HAL_RCIN_THREAD_ENABLED
// setup the RCIN thread - this will call tasks at 1kHz
_rcin_thread_ctx = chThdCreateStatic(_rcin_thread_wa,
sizeof(_rcin_thread_wa),
APM_RCIN_PRIORITY, /* Initial priority. */
_rcin_thread, /* Thread function. */
this); /* Thread parameter. */
#endif
#ifndef HAL_USE_EMPTY_IO
// the IO thread runs at lower priority
_io_thread_ctx = chThdCreateStatic(_io_thread_wa,
sizeof(_io_thread_wa),
APM_IO_PRIORITY, /* Initial priority. */
_io_thread, /* Thread function. */
this); /* Thread parameter. */
#endif
#ifndef HAL_USE_EMPTY_STORAGE
// the storage thread runs at just above IO priority
_storage_thread_ctx = chThdCreateStatic(_storage_thread_wa,
sizeof(_storage_thread_wa),
APM_STORAGE_PRIORITY, /* Initial priority. */
_storage_thread, /* Thread function. */
this); /* Thread parameter. */
#endif
}
void Scheduler::delay_microseconds(uint16_t usec)
{
if (usec == 0) { //chibios faults with 0us sleep
return;
}
uint32_t ticks;
ticks = chTimeUS2I(usec);
if (ticks == 0) {
// calling with ticks == 0 causes a hard fault on ChibiOS
ticks = 1;
}
ticks = MIN(TIME_MAX_INTERVAL, ticks);
chThdSleep(MAX(ticks,CH_CFG_ST_TIMEDELTA)); //Suspends Thread for desired microseconds
}
/*
wrapper around sem_post that boosts main thread priority
*/
static void set_high_priority()
{
#if APM_MAIN_PRIORITY_BOOST != APM_MAIN_PRIORITY
hal_chibios_set_priority(APM_MAIN_PRIORITY_BOOST);
#endif
}
/*
return the main thread to normal priority
*/
void Scheduler::boost_end(void)
{
#if APM_MAIN_PRIORITY_BOOST != APM_MAIN_PRIORITY
if (in_main_thread() && _priority_boosted) {
_priority_boosted = false;
hal_chibios_set_priority(APM_MAIN_PRIORITY);
}
#endif
}
/*
a variant of delay_microseconds that boosts priority to
APM_MAIN_PRIORITY_BOOST for APM_MAIN_PRIORITY_BOOST_USEC
microseconds when the time completes. This significantly improves
the regularity of timing of the main loop
*/
void Scheduler::delay_microseconds_boost(uint16_t usec)
{
if (!_priority_boosted && in_main_thread()) {
set_high_priority();
_priority_boosted = true;
_called_boost = true;
}
delay_microseconds(usec); //Suspends Thread for desired microseconds
}
/*
return true if delay_microseconds_boost() has been called since last check
*/
bool Scheduler::check_called_boost(void)
{
if (!_called_boost) {
return false;
}
_called_boost = false;
return true;
}
void Scheduler::delay(uint16_t ms)
{
uint64_t start = AP_HAL::micros64();
while ((AP_HAL::micros64() - start)/1000 < ms) {
delay_microseconds(1000);
if (_min_delay_cb_ms <= ms) {
if (in_main_thread()) {
const auto old_task = hal.util->persistent_data.scheduler_task;
hal.util->persistent_data.scheduler_task = -4;
call_delay_cb();
hal.util->persistent_data.scheduler_task = old_task;
}
}
}
}
void Scheduler::register_timer_process(AP_HAL::MemberProc proc)
{
chBSemWait(&_timer_semaphore);
for (uint8_t i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
chBSemSignal(&_timer_semaphore);
return;
}
}
if (_num_timer_procs < CHIBIOS_SCHEDULER_MAX_TIMER_PROCS) {
_timer_proc[_num_timer_procs] = proc;
_num_timer_procs++;
} else {
DEV_PRINTF("Out of timer processes\n");
}
chBSemSignal(&_timer_semaphore);
}
void Scheduler::register_io_process(AP_HAL::MemberProc proc)
{
chBSemWait(&_io_semaphore);
for (uint8_t i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] == proc) {
chBSemSignal(&_io_semaphore);
return;
}
}
if (_num_io_procs < CHIBIOS_SCHEDULER_MAX_TIMER_PROCS) {
_io_proc[_num_io_procs] = proc;
_num_io_procs++;
} else {
DEV_PRINTF("Out of IO processes\n");
}
chBSemSignal(&_io_semaphore);
}
void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
{
_failsafe = failsafe;
}
void Scheduler::reboot(bool hold_in_bootloader)
{
// disarm motors to ensure they are off during a bootloader upload
hal.rcout->force_safety_on();
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
iomcu.shutdown();
}
#endif
#if HAL_LOGGING_ENABLED
//stop logging
if (AP_Logger::get_singleton()) {
AP::logger().StopLogging();
}
// unmount filesystem, if active
AP::FS().unmount();
#endif
#if AP_FASTBOOT_ENABLED
// setup RTC for fast reboot
set_fast_reboot(hold_in_bootloader?RTC_BOOT_HOLD:RTC_BOOT_FAST);
#endif
// disable all interrupt sources
port_disable();
// reboot
NVIC_SystemReset();
}
void Scheduler::_run_timers()
{
if (_in_timer_proc) {
return;
}
_in_timer_proc = true;
int num_procs = 0;
chBSemWait(&_timer_semaphore);
num_procs = _num_timer_procs;
chBSemSignal(&_timer_semaphore);
// now call the timer based drivers
for (int i = 0; i < num_procs; i++) {
if (_timer_proc[i]) {
_timer_proc[i]();
}
}
// and the failsafe, if one is setup
if (_failsafe != nullptr) {
_failsafe();
}
#if HAL_USE_ADC == TRUE && !defined(HAL_DISABLE_ADC_DRIVER)
// process analog input
((AnalogIn *)hal.analogin)->_timer_tick();
#endif
_in_timer_proc = false;
}
void Scheduler::_timer_thread(void *arg)
{
Scheduler *sched = (Scheduler *)arg;
chRegSetThreadName("timer");
while (!sched->_hal_initialized) {
sched->delay_microseconds(1000);
}
while (true) {
sched->delay_microseconds(1000);
// run registered timers
sched->_run_timers();
if (sched->in_expected_delay()) {
sched->watchdog_pat();
}
}
}
void Scheduler::_rcout_thread(void *arg)
{
#ifndef HAL_NO_RCOUT_THREAD
Scheduler *sched = (Scheduler *)arg;
chRegSetThreadName("rcout");
while (!sched->_hal_initialized) {
sched->delay_microseconds(1000);
}
#if HAL_USE_PWM == TRUE
// trampoline into the rcout thread
((RCOutput*)hal.rcout)->rcout_thread();
#endif
#endif
}
/*
return true if we are in a period of expected delay. This can be
used to suppress error messages
*/
bool Scheduler::in_expected_delay(void) const
{
#if AP_HAL_CHIBIOS_IN_EXPECTED_DELAY_WHEN_NOT_INITIALISED
if (!_initialized) {
// until setup() is complete we expect delays
return true;
}
#endif
if (expect_delay_start != 0) {
uint32_t now = AP_HAL::millis();
if (now - expect_delay_start <= expect_delay_length) {
return true;
}
}
#if !defined(HAL_NO_FLASH_SUPPORT) && !defined(HAL_BOOTLOADER_BUILD)
if (stm32_flash_recent_erase()) {
return true;
}
#endif
return false;
}
#if HAL_MONITOR_THREAD_ENABLED
void Scheduler::_monitor_thread(void *arg)
{
Scheduler *sched = (Scheduler *)arg;
chRegSetThreadName("monitor");
while (!sched->_initialized) {
sched->delay(100);
}
bool using_watchdog = AP_BoardConfig::watchdog_enabled();
#if HAL_LOGGING_ENABLED
uint8_t log_wd_counter = 0;
#endif
while (true) {
sched->delay(100);
if (using_watchdog) {
stm32_watchdog_save((uint32_t *)&hal.util->persistent_data, (sizeof(hal.util->persistent_data)+3)/4);
}
// if running memory guard then check all allocations
malloc_check(nullptr);
uint32_t now = AP_HAL::millis();
uint32_t loop_delay = now - sched->last_watchdog_pat_ms;
if (loop_delay >= 200) {
// the main loop has been stuck for at least
// 200ms. Starting logging the main loop state
#if HAL_LOGGING_ENABLED
const AP_HAL::Util::PersistentData &pd = hal.util->persistent_data;
if (AP_Logger::get_singleton()) {
const struct log_MON mon{
LOG_PACKET_HEADER_INIT(LOG_MON_MSG),
time_us : AP_HAL::micros64(),
loop_delay : loop_delay,
current_task : pd.scheduler_task,
internal_error_mask : pd.internal_errors,
internal_error_count : pd.internal_error_count,
internal_error_line : pd.internal_error_last_line,
mavmsg : pd.last_mavlink_msgid,
mavcmd : pd.last_mavlink_cmd,
semline : pd.semaphore_line,
spicnt : pd.spi_count,
i2ccnt : pd.i2c_count
};
AP::logger().WriteCriticalBlock(&mon, sizeof(mon));
}
#endif
}
if (loop_delay >= 500 && !sched->in_expected_delay()) {
// at 500ms we declare an internal error
AP::internalerror().error(AP_InternalError::error_t::main_loop_stuck, hal.util->persistent_data.semaphore_line);
/*
if we are armed and get this condition then it is likely
a lock ordering deadlock. If the main thread is waiting
on a mutex then we try to force release the mutex from
the thread that is holding it.
*/
try_force_mutex();
}
#if AP_CRASHDUMP_ENABLED
if (loop_delay >= 1800 && using_watchdog) {
// we are about to watchdog, better to trigger a hardfault
// now and get a crash dump file
void *ptr = (void*)0xE000FFFF;
typedef void (*fptr)();
fptr gptr = (fptr) (void *)ptr;
gptr();
}
#endif
#if HAL_LOGGING_ENABLED
if (log_wd_counter++ == 10 && hal.util->was_watchdog_reset()) {
log_wd_counter = 0;
// log watchdog message once a second
const AP_HAL::Util::PersistentData &pd = hal.util->last_persistent_data;
struct log_WDOG wdog{
LOG_PACKET_HEADER_INIT(LOG_WDOG_MSG),
time_us : AP_HAL::micros64(),
scheduler_task : pd.scheduler_task,
internal_errors : pd.internal_errors,
internal_error_count : pd.internal_error_count,
internal_error_last_line : pd.internal_error_last_line,
last_mavlink_msgid : pd.last_mavlink_msgid,
last_mavlink_cmd : pd.last_mavlink_cmd,
semaphore_line : pd.semaphore_line,
fault_line : pd.fault_line,
fault_type : pd.fault_type,
fault_addr : pd.fault_addr,
fault_thd_prio : pd.fault_thd_prio,
fault_icsr : pd.fault_icsr,
fault_lr : pd.fault_lr
};
memcpy(wdog.thread_name4, pd.thread_name4, ARRAY_SIZE(wdog.thread_name4));
AP::logger().WriteCriticalBlock(&wdog, sizeof(wdog));
}
#endif // HAL_LOGGING_ENABLED
#ifndef IOMCU_FW
// setup GPIO interrupt quotas
hal.gpio->timer_tick();
#endif
}
}
#endif // HAL_MONITOR_THREAD_ENABLED
void Scheduler::_rcin_thread(void *arg)
{
Scheduler *sched = (Scheduler *)arg;
chRegSetThreadName("rcin");
while (!sched->_hal_initialized) {
sched->delay_microseconds(20000);
}
while (true) {
sched->delay_microseconds(1000);
((RCInput *)hal.rcin)->_timer_tick();
}
}
void Scheduler::_run_io(void)
{
if (_in_io_proc) {
return;
}
_in_io_proc = true;
int num_procs = 0;
chBSemWait(&_io_semaphore);
num_procs = _num_io_procs;
chBSemSignal(&_io_semaphore);
// now call the IO based drivers
for (int i = 0; i < num_procs; i++) {
if (_io_proc[i]) {
_io_proc[i]();
}
}
_in_io_proc = false;
}
void Scheduler::_io_thread(void* arg)
{
Scheduler *sched = (Scheduler *)arg;
chRegSetThreadName("io");
while (!sched->_hal_initialized) {
sched->delay_microseconds(1000);
}
#if HAL_LOGGING_ENABLED
uint32_t last_sd_start_ms = AP_HAL::millis();
#endif
#if CH_DBG_ENABLE_STACK_CHECK == TRUE
uint32_t last_stack_check_ms = 0;
#endif
while (true) {
sched->delay_microseconds(1000);
// run registered IO processes
sched->_run_io();
#if HAL_LOGGING_ENABLED || CH_DBG_ENABLE_STACK_CHECK == TRUE
uint32_t now = AP_HAL::millis();
#endif
#if HAL_LOGGING_ENABLED
if (!hal.util->get_soft_armed()) {
// if sdcard hasn't mounted then retry it every 3s in the IO
// thread when disarmed
if (now - last_sd_start_ms > 3000) {
last_sd_start_ms = now;
AP::FS().retry_mount();
}
}
#endif
#if CH_DBG_ENABLE_STACK_CHECK == TRUE
if (now - last_stack_check_ms > 1000) {
last_stack_check_ms = now;
sched->check_stack_free();
}
#endif
}
}
#if defined(STM32H7)
/*
the H7 has 64k of ITCM memory at address zero. We reserve 1k of it
to prevent nullptr being valid. This function checks that memory is
always zero
*/
void Scheduler::check_low_memory_is_zero()
{
const uint32_t *lowmem = nullptr;
// we start at address 0x1 as reading address zero causes a fault
for (uint16_t i=1; i<256; i++) {
if (lowmem[i] != 0) {
// re-use memory guard internal error
AP_memory_guard_error(1023);
break;
}
}
// we can't do address 0, but can check next 3 bytes
const uint8_t *addr0 = (const uint8_t *)0;
for (uint8_t i=1; i<4; i++) {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Warray-bounds"
if (addr0[i] != 0) {
AP_memory_guard_error(1023);
break;
}
#pragma GCC diagnostic pop
}
}
#endif // STM32H7
void Scheduler::_storage_thread(void* arg)
{
Scheduler *sched = (Scheduler *)arg;
chRegSetThreadName("storage");
while (!sched->_hal_initialized) {
sched->delay_microseconds(10000);
}
#if defined STM32H7
uint16_t memcheck_counter=0;
#endif
while (true) {
sched->delay_microseconds(1000);
// process any pending storage writes
hal.storage->_timer_tick();
#if defined STM32H7
if (memcheck_counter++ % 500 == 0) {
// run check at 2Hz
sched->check_low_memory_is_zero();
}
#endif
}
}
void Scheduler::set_system_initialized()
{
if (_initialized) {
AP_HAL::panic("PANIC: scheduler::set_system_initialized called"
"more than once");
}
_initialized = true;
}
/*
disable interrupts and return a context that can be used to
restore the interrupt state. This can be used to protect
critical regions
*/
void *Scheduler::disable_interrupts_save(void)
{
return (void *)(uintptr_t)chSysGetStatusAndLockX();
}
/*
restore interrupt state from disable_interrupts_save()
*/
void Scheduler::restore_interrupts(void *state)
{
chSysRestoreStatusX((syssts_t)(uintptr_t)state);
}
/*
trampoline for thread create
*/
void Scheduler::thread_create_trampoline(void *ctx)
{
AP_HAL::MemberProc *t = (AP_HAL::MemberProc *)ctx;
(*t)();
free(t);
}
// calculates an integer to be used as the priority for a newly-created thread
uint8_t Scheduler::calculate_thread_priority(priority_base base, int8_t priority) const
{
uint8_t thread_priority = APM_IO_PRIORITY;
static const struct {
priority_base base;
uint8_t p;
} priority_map[] = {
{ PRIORITY_BOOST, APM_MAIN_PRIORITY_BOOST},
{ PRIORITY_MAIN, APM_MAIN_PRIORITY},
{ PRIORITY_SPI, APM_SPI_PRIORITY},
{ PRIORITY_I2C, APM_I2C_PRIORITY},
{ PRIORITY_CAN, APM_CAN_PRIORITY},
{ PRIORITY_TIMER, APM_TIMER_PRIORITY},
{ PRIORITY_RCOUT, APM_RCOUT_PRIORITY},
{ PRIORITY_LED, APM_LED_PRIORITY},
{ PRIORITY_RCIN, APM_RCIN_PRIORITY},
{ PRIORITY_IO, APM_IO_PRIORITY},
{ PRIORITY_UART, APM_UART_PRIORITY},
{ PRIORITY_STORAGE, APM_STORAGE_PRIORITY},
{ PRIORITY_SCRIPTING, APM_SCRIPTING_PRIORITY},
{ PRIORITY_NET, APM_NET_PRIORITY},
};
for (uint8_t i=0; i 0) {
expect_delay_nesting--;
}
if (expect_delay_nesting == 0) {
expect_delay_start = 0;
}
} else {
uint32_t now = AP_HAL::millis();
if (expect_delay_start != 0) {
// we already have a delay running, possibly extend it
uint32_t done = now - expect_delay_start;
if (expect_delay_length > done) {
ms = MAX(ms, expect_delay_length - done);
}
}
expect_delay_start = now;
expect_delay_length = ms;
expect_delay_nesting++;
// also put our priority below timer thread if we are boosted
boost_end();
}
}
// pat the watchdog
void Scheduler::watchdog_pat(void)
{
stm32_watchdog_pat();
last_watchdog_pat_ms = AP_HAL::millis();
#if defined(HAL_GPIO_PIN_EXT_WDOG)
ext_watchdog_pat(last_watchdog_pat_ms);
#endif
}
#if defined(HAL_GPIO_PIN_EXT_WDOG)
// toggle the external watchdog gpio pin
void Scheduler::ext_watchdog_pat(uint32_t now_ms)
{
// toggle watchdog GPIO every WDI_OUT_INTERVAL_TIME_MS
if ((now_ms - last_ext_watchdog_ms) >= EXT_WDOG_INTERVAL_MS) {
palToggleLine(HAL_GPIO_PIN_EXT_WDOG);
last_ext_watchdog_ms = now_ms;
}
}
#endif
#if CH_DBG_ENABLE_STACK_CHECK == TRUE
/*
check we have enough stack free on all threads and the ISR stack
*/
void Scheduler::check_stack_free(void)
{
// we raise an internal error stack_overflow when the available
// stack on any thread or the ISR stack drops below this
// threshold. This means we get an overflow error when we haven't
// yet completely run out of stack. This gives us a good
// pre-warning when we are getting too close
#if defined(STM32F1)
const uint32_t min_stack = 32;
#else
const uint32_t min_stack = 64;
#endif
if (stack_free(&__main_stack_base__) < min_stack) {
// use "line number" of 0xFFFF for ISR stack low
#if AP_INTERNALERROR_ENABLED
AP::internalerror().error(AP_InternalError::error_t::stack_overflow, 0xFFFF);
#endif
}
for (thread_t *tp = chRegFirstThread(); tp; tp = chRegNextThread(tp)) {
if (stack_free(tp->wabase) < min_stack) {
// use task priority for line number. This allows us to
// identify the task fairly reliably
#if AP_INTERNALERROR_ENABLED
AP::internalerror().error(AP_InternalError::error_t::stack_overflow, tp->realprio);
#endif
}
}
}
#endif // CH_DBG_ENABLE_STACK_CHECK == TRUE
#endif // CH_CFG_USE_DYNAMIC
/*
try to avoid watchdog during a locking deadlock by force releasing a
mutex that is blocking the main thread
*/
void Scheduler::try_force_mutex(void)
{
#if HAL_LOGGING_ENABLED
chSysLock();
thread_t *main_thread = get_main_thread();
if (main_thread == nullptr || main_thread->state != CH_STATE_WTMTX) {
chSysUnlock();
return;
}
mutex_t *wtmtx = main_thread->u.wtmtxp;
if (wtmtx == nullptr || wtmtx->owner == nullptr) {
chSysUnlock();
return;
}
char thdname[17] {};
uint16_t sem_line = hal.util->persistent_data.semaphore_line;
strncpy(thdname, wtmtx->owner->name, sizeof(thdname)-1);
// we will force release the lock
chMtxForceReleaseS(wtmtx);
chSysUnlock();
// log a DLCK message with information on the deadlock we have avoided
AP::logger().WriteCritical("DLCK", "TimeUS,SemLine,ThdName,MtxP", "QHNI",
AP_HAL::micros64(),
sem_line,
thdname,
unsigned(wtmtx));
GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "CRITICAL Deadlock %u %s %p", sem_line, thdname, wtmtx);
#endif
}
#endif // HAL_SCHEDULER_ENABLED