#include #include "AP_InertialSensor_SITL.h" #include #include #if AP_SIM_INS_ENABLED const extern AP_HAL::HAL& hal; AP_InertialSensor_SITL::AP_InertialSensor_SITL(AP_InertialSensor &imu, const uint16_t sample_rates[]) : AP_InertialSensor_Backend(imu), gyro_sample_hz(sample_rates[0]), accel_sample_hz(sample_rates[1]) { } /* detect the sensor */ AP_InertialSensor_Backend *AP_InertialSensor_SITL::detect(AP_InertialSensor &_imu, const uint16_t sample_rates[]) { AP_InertialSensor_SITL *sensor = new AP_InertialSensor_SITL(_imu, sample_rates); if (sensor == nullptr) { return nullptr; } if (!sensor->init_sensor()) { delete sensor; return nullptr; } return sensor; } bool AP_InertialSensor_SITL::init_sensor(void) { sitl = AP::sitl(); if (sitl == nullptr) { return false; } return true; } // calculate a noisy noise component static float calculate_noise(float noise, float noise_variation) { return noise * (1.0f + noise_variation * rand_float()); } float AP_InertialSensor_SITL::get_temperature(void) { #if HAL_INS_TEMPERATURE_CAL_ENABLE if (!is_zero(sitl->imu_temp_fixed)) { // user wants fixed temperature return sitl->imu_temp_fixed; } uint32_t now = AP_HAL::millis(); if (temp_start_ms == 0) { temp_start_ms = now; } // follow a curve with given start, end and time constant const float tsec = (AP_HAL::millis() - temp_start_ms) * 0.001f; const float T0 = sitl->imu_temp_start; const float T1 = sitl->imu_temp_end; const float tconst = sitl->imu_temp_tconst; return T1 - (T1 - T0) * expf(-tsec / tconst); #else return 20.0f; #endif } /* generate an accelerometer sample */ void AP_InertialSensor_SITL::generate_accel() { Vector3f accel_accum; uint8_t nsamples = enable_fast_sampling(accel_instance) ? 4 : 1; for (uint8_t j = 0; j < nsamples; j++) { Vector3f accel = Vector3f(sitl->state.xAccel, sitl->state.yAccel, sitl->state.zAccel); const Vector3f &accel_trim = sitl->accel_trim.get(); if (!accel_trim.is_zero()) { Matrix3f trim_rotation; trim_rotation.from_euler(accel_trim.x, accel_trim.y, 0); accel = trim_rotation.transposed() * accel; } // add scaling Vector3f accel_scale = sitl->accel_scale[accel_instance].get(); // note that we divide so the SIM_ACC values match the // INS_ACCSCAL values if (!is_zero(accel_scale.x)) { accel.x /= accel_scale.x; } if (!is_zero(accel_scale.y)) { accel.y /= accel_scale.y; } if (!is_zero(accel_scale.z)) { accel.z /= accel_scale.z; } // apply bias const Vector3f &accel_bias = sitl->accel_bias[accel_instance].get(); accel += accel_bias; // minimum noise levels are 2 bits, but averaged over many // samples, giving around 0.01 m/s/s float accel_noise = 0.01f; float noise_variation = 0.05f; // this smears the individual motor peaks somewhat emulating physical motors float freq_variation = 0.12f; // add in sensor noise accel += Vector3f{rand_float(), rand_float(), rand_float()} * accel_noise; bool motors_on = sitl->throttle > sitl->ins_noise_throttle_min; // on a real 180mm copter gyro noise varies between 0.8-4 m/s/s for throttle 0.2-0.8 // giving a accel noise variation of 5.33 m/s/s over the full throttle range if (motors_on) { // add extra noise when the motors are on accel_noise = sitl->accel_noise[accel_instance]; } // VIB_FREQ is a static vibration applied to each axis const Vector3f &vibe_freq = sitl->vibe_freq; if (!vibe_freq.is_zero() && motors_on) { accel.x += sinf(accel_time * 2 * M_PI * vibe_freq.x) * calculate_noise(accel_noise, noise_variation); accel.y += sinf(accel_time * 2 * M_PI * vibe_freq.y) * calculate_noise(accel_noise, noise_variation); accel.z += sinf(accel_time * 2 * M_PI * vibe_freq.z) * calculate_noise(accel_noise, noise_variation); accel_time += 1.0f / (accel_sample_hz * nsamples); } // VIB_MOT_MAX is a rpm-scaled vibration applied to each axis if (!is_zero(sitl->vibe_motor) && motors_on) { uint32_t mask = sitl->state.motor_mask; uint8_t mbit; while ((mbit = __builtin_ffs(mask)) != 0) { const uint8_t motor = mbit-1; mask &= ~(1U<vibe_motor_harmonics); const float base_freq = calculate_noise(sitl->state.rpm[motor] / 60.0f, freq_variation); while (harmonics != 0) { const uint8_t bit = __builtin_ffs(harmonics); harmonics &= ~(1U<<(bit-1U)); const float phase = accel_motor_phase[motor] * float(bit); accel.x += sinf(phase) * calculate_noise(accel_noise * sitl->vibe_motor_scale, noise_variation); accel.y += sinf(phase) * calculate_noise(accel_noise * sitl->vibe_motor_scale, noise_variation); accel.z += sinf(phase) * calculate_noise(accel_noise * sitl->vibe_motor_scale, noise_variation); } const float phase_incr = base_freq * 2 * M_PI / (accel_sample_hz * nsamples); accel_motor_phase[motor] = wrap_PI(accel_motor_phase[motor] + phase_incr); } } // correct for the acceleration due to the IMU position offset and angular acceleration // correct for the centripetal acceleration // only apply corrections to first accelerometer Vector3f pos_offset = sitl->imu_pos_offset; if (!pos_offset.is_zero()) { // calculate sensed acceleration due to lever arm effect // Note: the % operator has been overloaded to provide a cross product Vector3f angular_accel = Vector3f(radians(sitl->state.angAccel.x), radians(sitl->state.angAccel.y), radians(sitl->state.angAccel.z)); Vector3f lever_arm_accel = angular_accel % pos_offset; // calculate sensed acceleration due to centripetal acceleration Vector3f angular_rate = Vector3f(radians(sitl->state.rollRate), radians(sitl->state.pitchRate), radians(sitl->state.yawRate)); Vector3f centripetal_accel = angular_rate % (angular_rate % pos_offset); // apply corrections accel += lever_arm_accel + centripetal_accel; } if (fabsf(sitl->accel_fail[accel_instance]) > 1.0e-6f) { accel.x = accel.y = accel.z = sitl->accel_fail[accel_instance]; } #if HAL_INS_TEMPERATURE_CAL_ENABLE const float T = get_temperature(); sitl->imu_tcal[gyro_instance].sitl_apply_accel(T, accel); #endif _notify_new_accel_sensor_rate_sample(accel_instance, accel); accel_accum += accel; } accel_accum /= nsamples; _rotate_and_correct_accel(accel_instance, accel_accum); _notify_new_accel_raw_sample(accel_instance, accel_accum, AP_HAL::micros64()); _publish_temperature(accel_instance, get_temperature()); } /* generate a gyro sample */ void AP_InertialSensor_SITL::generate_gyro() { Vector3f gyro_accum; uint8_t nsamples = enable_fast_sampling(gyro_instance) ? 8 : 1; const float _gyro_drift = gyro_drift(); for (uint8_t j = 0; j < nsamples; j++) { float p = radians(sitl->state.rollRate) + _gyro_drift; float q = radians(sitl->state.pitchRate) + _gyro_drift; float r = radians(sitl->state.yawRate) + _gyro_drift; // minimum gyro noise is less than 1 bit float gyro_noise = ToRad(0.04f); constexpr float noise_variation = 0.05f; // this smears the individual motor peaks somewhat emulating physical motors constexpr float freq_variation = 0.12f; // add in sensor noise p += gyro_noise * rand_float(); q += gyro_noise * rand_float(); r += gyro_noise * rand_float(); bool motors_on = sitl->throttle > sitl->ins_noise_throttle_min; // on a real 180mm copter gyro noise varies between 0.2-0.4 rad/s for throttle 0.2-0.8 // giving a gyro noise variation of 0.33 rad/s or 20deg/s over the full throttle range if (motors_on) { // add extra noise when the motors are on gyro_noise = ToRad(sitl->gyro_noise[gyro_instance]) * sitl->throttle; } // VIB_FREQ is a static vibration applied to each axis const Vector3f &vibe_freq = sitl->vibe_freq; if (vibe_freq.is_zero() && is_zero(sitl->vibe_motor)) { // no rpm noise, so add in background noise if any p += gyro_noise * rand_float(); q += gyro_noise * rand_float(); r += gyro_noise * rand_float(); } if (!vibe_freq.is_zero() && motors_on) { p += sinf(gyro_time * 2 * M_PI * vibe_freq.x) * calculate_noise(gyro_noise, noise_variation); q += sinf(gyro_time * 2 * M_PI * vibe_freq.y) * calculate_noise(gyro_noise, noise_variation); r += sinf(gyro_time * 2 * M_PI * vibe_freq.z) * calculate_noise(gyro_noise, noise_variation); gyro_time += 1.0f / (gyro_sample_hz * nsamples); } // VIB_MOT_MAX is a rpm-scaled vibration applied to each axis if (!is_zero(sitl->vibe_motor) && motors_on) { uint32_t mask = sitl->state.motor_mask; uint8_t mbit; while ((mbit = __builtin_ffs(mask)) != 0) { const uint8_t motor = mbit-1; mask &= ~(1U<vibe_motor_harmonics); const float base_freq = calculate_noise(sitl->state.rpm[motor] / 60.0f, freq_variation); while (harmonics != 0) { const uint8_t bit = __builtin_ffs(harmonics); harmonics &= ~(1U<<(bit-1U)); const float phase = gyro_motor_phase[motor] * float(bit); p += sinf(phase) * calculate_noise(gyro_noise * sitl->vibe_motor_scale, noise_variation); q += sinf(phase) * calculate_noise(gyro_noise * sitl->vibe_motor_scale, noise_variation); r += sinf(phase) * calculate_noise(gyro_noise * sitl->vibe_motor_scale, noise_variation); } const float phase_incr = base_freq * 2 * M_PI / (gyro_sample_hz * nsamples); gyro_motor_phase[motor] = wrap_PI(gyro_motor_phase[motor] + phase_incr); } } Vector3f gyro {p, q, r}; #if HAL_INS_TEMPERATURE_CAL_ENABLE sitl->imu_tcal[gyro_instance].sitl_apply_gyro(get_temperature(), gyro); #endif // add in gyro scaling const Vector3f &scale = sitl->gyro_scale[gyro_instance]; gyro.x *= (1 + scale.x * 0.01f); gyro.y *= (1 + scale.y * 0.01f); gyro.z *= (1 + scale.z * 0.01f); gyro_accum += gyro; _notify_new_gyro_sensor_rate_sample(gyro_instance, gyro); } gyro_accum /= nsamples; _rotate_and_correct_gyro(gyro_instance, gyro_accum); _notify_new_gyro_raw_sample(gyro_instance, gyro_accum, AP_HAL::micros64()); } void AP_InertialSensor_SITL::timer_update(void) { uint64_t now = AP_HAL::micros64(); #if 0 // insert a 1s pause in IMU data. This triggers a pause in EK2 // processing that leads to some interesting issues if (now > 5e6 && now < 6e6) { return; } #endif if (sitl == nullptr) { return; } if (now >= next_accel_sample) { if (((1U << accel_instance) & sitl->accel_fail_mask) == 0) { generate_accel(); if (next_accel_sample == 0) { next_accel_sample = now + 1000000UL / accel_sample_hz; } else { while (now >= next_accel_sample) { next_accel_sample += 1000000UL / accel_sample_hz; } } } } if (now >= next_gyro_sample) { if (((1U << gyro_instance) & sitl->gyro_fail_mask) == 0) { generate_gyro(); if (next_gyro_sample == 0) { next_gyro_sample = now + 1000000UL / gyro_sample_hz; } else { while (now >= next_gyro_sample) { next_gyro_sample += 1000000UL / gyro_sample_hz; } } } } } float AP_InertialSensor_SITL::gyro_drift(void) const { if (is_zero(sitl->drift_speed) || is_zero(sitl->drift_time)) { return 0; } double period = sitl->drift_time * 2; double minutes = fmod(AP_HAL::micros64() / 60.0e6, period); if (minutes < period/2) { return minutes * ToRad(sitl->drift_speed); } return (period - minutes) * ToRad(sitl->drift_speed); } bool AP_InertialSensor_SITL::update(void) { update_accel(accel_instance); update_gyro(gyro_instance); return true; } uint8_t AP_InertialSensor_SITL::bus_id = 0; void AP_InertialSensor_SITL::start() { if (!_imu.register_gyro(gyro_instance, gyro_sample_hz, AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_SITL, bus_id, 1, DEVTYPE_SITL)) || !_imu.register_accel(accel_instance, accel_sample_hz, AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_SITL, bus_id, 2, DEVTYPE_SITL))) { return; } bus_id++; hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_InertialSensor_SITL::timer_update, void)); } #endif // AP_SIM_INS_ENABLED