/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Submarine simulator class */ #include "SIM_Submarine.h" #include #include using namespace SITL; static Thruster vectored_thrusters[] = { // Motor # Roll Factor Pitch Factor Yaw Factor Throttle Factor Forward Factor Lateral Factor Thruster(0, 0, 0, 1.0f, 0, -1.0f, 1.0f), Thruster(1, 0, 0, -1.0f, 0, -1.0f, -1.0f), Thruster(2, 0, 0, -1.0f, 0, 1.0f, 1.0f), Thruster(3, 0, 0, 1.0f, 0, 1.0f, -1.0f), Thruster(4, 1.0f, 0, 0, -1.0f, 0, 0), Thruster(5, -1.0f, 0, 0, -1.0f, 0, 0) }; static Thruster vectored_6dof_thrusters[] = { // Motor # Roll Factor Pitch Factor Yaw Factor Throttle Factor Forward Factor Lateral Factor Thruster(0, 0, 0, 1.0f, 0, -1.0f, 1.0f), Thruster(1, 0, 0, -1.0f, 0, -1.0f, -1.0f), Thruster(2, 0, 0, -1.0f, 0, 1.0f, 1.0f), Thruster(3, 0, 0, 1.0f, 0, 1.0f, -1.0f), Thruster(4, 1.0f, -1.0f, 0, -1.0f, 0, 0), Thruster(5, -1.0f, -1.0f, 0, -1.0f, 0, 0), Thruster(6, 1.0f, 1.0f, 0, -1.0f, 0, 0), Thruster(7, -1.0f, 1.0f, 0, -1.0f, 0, 0) }; Submarine::Submarine(const char *frame_str) : Aircraft(frame_str), frame(NULL) { frame_height = 0.0; ground_behavior = GROUND_BEHAVIOR_NONE; // default to vectored frame thrusters = vectored_thrusters; n_thrusters = 6; if (strstr(frame_str, "vectored_6dof")) { thrusters = vectored_6dof_thrusters; n_thrusters = 8; } } // calculate rotational and linear accelerations void Submarine::calculate_forces(const struct sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel) { rot_accel = Vector3f(0,0,0); // slight positive buoyancy body_accel = dcm.transposed() * Vector3f(0, 0, -calculate_buoyancy_acceleration()); for (int i = 0; i < n_thrusters; i++) { Thruster t = thrusters[i]; int16_t pwm = input.servos[t.servo]; float output = 0; // if valid pwm and not in the esc deadzone // TODO: extract deadzone from parameters/vehicle code if (pwm < 2000 && pwm > 1000 && (pwm < 1475 || pwm > 1525)) { output = (pwm - 1500) / 400.0; // range -1~1 } // 2.5 scalar for approximate real-life performance of T200 thruster body_accel += t.linear * output * frame_property.thrust / frame_property.weight; rot_accel += t.rotational * output * frame_property.thrust * frame_property.thruster_mount_radius / frame_property.moment_of_inertia; } float floor_depth = calculate_sea_floor_depth(position); range = floor_depth - position.z; // Limit movement at the sea floor if (position.z > floor_depth && body_accel.z > -GRAVITY_MSS) { body_accel.z = -GRAVITY_MSS; } // Calculate linear drag forces Vector3f linear_drag_forces; calculate_drag_force(velocity_air_bf, frame_property.linear_drag_coefficient, linear_drag_forces); // Add forces in body frame accel body_accel -= linear_drag_forces / frame_property.weight; // Calculate angular drag forces // TODO: This results in the wrong units. Fix the math. Vector3f angular_drag_torque; calculate_angular_drag_torque(gyro, frame_property.angular_drag_coefficient, angular_drag_torque); // Calculate torque induced by buoyancy foams on the frame Vector3f buoyancy_torque; calculate_buoyancy_torque(buoyancy_torque); // Add forces in body frame accel rot_accel -= angular_drag_torque / frame_property.moment_of_inertia; rot_accel += buoyancy_torque / frame_property.moment_of_inertia; add_shove_forces(rot_accel, body_accel); } /** * @brief Calculate the torque induced by buoyancy foam * * @param torque Output torques */ void Submarine::calculate_buoyancy_torque(Vector3f &torque) { // Let's assume 2 Liters water displacement at the top, and ~ 2kg of weight at the bottom. const Vector3f force_up(0,0,-40); // 40 N upwards const Vector3f force_position = dcm.transposed() * Vector3f(0, 0, 0.15); // offset in meters torque = force_position % force_up; } /** * @brief Calculate sea floor depth from submarine position * This creates a non planar floor for rangefinder sensor test * TODO: Create a better sea floor with procedural generatation * * @param position * @return float */ float Submarine::calculate_sea_floor_depth(const Vector3f &/*position*/) { return 50; } /** * @brief Calculate drag force against body * * @param velocity Body frame velocity of fluid * @param drag_coefficient Drag coefficient of body * @param force Output forces * $ F_D = rho * v^2 * A * C_D / 2 $ * rho = water density (kg/m^3), V = velocity (m/s), A = area (m^2), C_D = drag_coefficient */ void Submarine::calculate_drag_force(const Vector3f &velocity, const Vector3f &drag_coefficient, Vector3f &force) { /** * @brief It's necessary to keep the velocity orientation from the body frame. * To do so, a mathematical artifice is used to do velocity square but without loosing the direction. * $(|V|/V)*V^2$ = $|V|*V$ */ const Vector3f velocity_2( fabsf(velocity.x) * velocity.x, fabsf(velocity.y) * velocity.y, fabsf(velocity.z) * velocity.z ); force = (velocity_2 * water_density) * frame_property.equivalent_sphere_area / 2.0f; force *= drag_coefficient; } /** * @brief Calculate angular drag torque using the equivalente sphere area and assuming a laminar external flow. * * $F_D = C_D*A*\rho*V^2/2$ * where: * $F_D$ is the drag force * $C_D$ is the drag coefficient * $A$ is the surface area in contact with the fluid * $/rho$ is the fluid density (1000kg/m³ for water) * $V$ is the fluid velocity velocity relative to the surface * * @param angular_velocity Body frame velocity of fluid * @param drag_coefficient Rotational drag coefficient of body */ void Submarine::calculate_angular_drag_torque(const Vector3f &angular_velocity, const Vector3f &drag_coefficient, Vector3f &torque) { /** * @brief It's necessary to keep the velocity orientation from the body frame. * To do so, a mathematical artifice is used to do velocity square but without loosing the direction. * $(|V|/V)*V^2$ = $|V|*V$ */ Vector3f v_2( fabsf(angular_velocity.x) * angular_velocity.x, fabsf(angular_velocity.y) * angular_velocity.y, fabsf(angular_velocity.z) * angular_velocity.z ); Vector3f f_d = v_2 *= drag_coefficient * frame_property.equivalent_sphere_area * 1000 / 2; torque = f_d * frame_property.equivalent_sphere_radius; } /** * @brief Calculate buoyancy force of the frame * * @return float */ float Submarine::calculate_buoyancy_acceleration() { float below_water_level = position.z - frame_property.height/2; // Completely above water level if (below_water_level < 0) { return 0.0f; } // Completely below water level if (below_water_level > frame_property.height/2) { return frame_property.buoyancy_acceleration; } // bouyant force is proportional to fraction of height in water return frame_property.buoyancy_acceleration * below_water_level/frame_property.height; }; /* update the Submarine simulation by one time step */ void Submarine::update(const struct sitl_input &input) { // get wind vector setup update_wind(input); Vector3f rot_accel; calculate_forces(input, rot_accel, accel_body); update_dynamics(rot_accel); // update lat/lon/altitude update_position(); time_advance(); // update magnetic field update_mag_field_bf(); } /* return true if we are on the ground */ bool Submarine::on_ground() const { return false; }