/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 #include "AP_InertialSensor_PX4.h" const extern AP_HAL::HAL& hal; #include #include #include #include #include #include #include uint16_t AP_InertialSensor_PX4::_init_sensor( Sample_rate sample_rate ) { switch (sample_rate) { case RATE_50HZ: _default_filter_hz = 15; _sample_time_usec = 20000; break; case RATE_100HZ: _default_filter_hz = 30; _sample_time_usec = 10000; break; case RATE_200HZ: default: _default_filter_hz = 30; _sample_time_usec = 5000; break; } _delta_time = _sample_time_usec * 1.0e-6f; // init accelerometers _accel_fd = open(ACCEL_DEVICE_PATH, O_RDONLY); if (_accel_fd < 0) { hal.scheduler->panic("Unable to open accel device " ACCEL_DEVICE_PATH); } _gyro_fd = open(GYRO_DEVICE_PATH, O_RDONLY); if (_gyro_fd < 0) { hal.scheduler->panic("Unable to open gyro device " GYRO_DEVICE_PATH); } #ifdef CONFIG_ARCH_BOARD_PX4FMU_V1 uint32_t driver_rate = 1000; #else uint32_t driver_rate = 800; #endif /* * set the accel and gyro sampling rate. */ ioctl(_accel_fd, ACCELIOCSSAMPLERATE, driver_rate); ioctl(_accel_fd, SENSORIOCSPOLLRATE, driver_rate); ioctl(_gyro_fd, GYROIOCSSAMPLERATE, driver_rate); ioctl(_gyro_fd, SENSORIOCSPOLLRATE, driver_rate); _set_filter_frequency(_mpu6000_filter); #if defined(CONFIG_ARCH_BOARD_PX4FMU_V2) return AP_PRODUCT_ID_PX4_V2; #else return AP_PRODUCT_ID_PX4; #endif } /* set the filter frequency */ void AP_InertialSensor_PX4::_set_filter_frequency(uint8_t filter_hz) { if (filter_hz == 0) { filter_hz = _default_filter_hz; } ioctl(_gyro_fd, GYROIOCSLOWPASS, filter_hz); ioctl(_accel_fd, ACCELIOCSLOWPASS, filter_hz); } /*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */ bool AP_InertialSensor_PX4::update(void) { Vector3f accel_scale = _accel_scale.get(); // get the latest sample from the sensor drivers _get_sample(); _accel = _accel_in; _gyro = _gyro_in; // add offsets and rotation _accel.rotate(_board_orientation); _accel.x *= accel_scale.x; _accel.y *= accel_scale.y; _accel.z *= accel_scale.z; _accel -= _accel_offset; _gyro.rotate(_board_orientation); _gyro -= _gyro_offset; if (_last_filter_hz != _mpu6000_filter) { _set_filter_frequency(_mpu6000_filter); _last_filter_hz = _mpu6000_filter; } _have_sample_available = false; return true; } float AP_InertialSensor_PX4::get_delta_time(void) { return _delta_time; } float AP_InertialSensor_PX4::get_gyro_drift_rate(void) { // 0.5 degrees/second/minute return ToRad(0.5/60); } void AP_InertialSensor_PX4::_get_sample(void) { struct accel_report accel_report; struct gyro_report gyro_report; while (::read(_accel_fd, &accel_report, sizeof(accel_report)) == sizeof(accel_report) && accel_report.timestamp != _last_accel_timestamp) { _accel_in = Vector3f(accel_report.x, accel_report.y, accel_report.z); _last_accel_timestamp = accel_report.timestamp; } while (::read(_gyro_fd, &gyro_report, sizeof(gyro_report)) == sizeof(gyro_report) && gyro_report.timestamp != _last_gyro_timestamp) { _gyro_in = Vector3f(gyro_report.x, gyro_report.y, gyro_report.z); _last_gyro_timestamp = gyro_report.timestamp; } } bool AP_InertialSensor_PX4::sample_available(void) { uint64_t tnow = hrt_absolute_time(); while (tnow - _last_sample_timestamp > _sample_time_usec) { _have_sample_available = true; _last_sample_timestamp += _sample_time_usec; } return _have_sample_available; } bool AP_InertialSensor_PX4::wait_for_sample(uint16_t timeout_ms) { if (sample_available()) { return true; } uint32_t start = hal.scheduler->millis(); while ((hal.scheduler->millis() - start) < timeout_ms) { uint64_t tnow = hrt_absolute_time(); // we spin for the last timing_lag microseconds. Before that // we yield the CPU to allow IO to happen const uint16_t timing_lag = 400; if (_last_sample_timestamp + _sample_time_usec > tnow+timing_lag) { hal.scheduler->delay_microseconds(_last_sample_timestamp + _sample_time_usec - (tnow+timing_lag)); } if (sample_available()) { return true; } } return false; } #endif // CONFIG_HAL_BOARD